BY THE SAME ATUTHOR

Spherical Astronomy

Stellar Dyiiandes

Celestial Mechanics

The Origin of the Hartk

Some Fomous Stars

Foundations of Astronomy
Astronomy

The Sun, the Stars anc the U iverye
Astrophysies

John Couch Adams and the THseovery of Nephne
Foundations of dnalytical Glemetey \<\
Seq und Air Nuvigation A
Fngroduction to Sea and Air N prdione 4 <>§
Astronemdeal Novigation {S,\ ”
Handbook of Sea Nuwigation g

e

*
4

7

ALSOD JOINT-AUTHOR OF '/}

Admivalty Manual of Novigution [!‘K\\ Vols, 1. 2
Position Line Tabfes \ '

7
&%

o
N
N x‘\; .
\a\rww_dbr‘auhb_l'agsy\’b g.in

.

L



COMBINATION OF
OBSERVATIONS

X\
BY ,\\Q
. (@
W. M. SMART, M.A., D.Sc. N’

fegius Professor of Astronomy in the

University of Qlasgow X \\Q
N\

r“‘\\"
v’\O
~
~A\~}
Q’\O
\ 3
N
™3
‘WW\gg‘b‘:alﬂibrary,org,in

. .

x'g;: F

- N PR SRS

: :"\/\: :
g\S\./
(; b3 -
&
P\
»
0\\.¢
&

CAMBRIDGE
AT THE UNIVERRBITY PRESS
1955



PUBLISHED EY
THE SYNDICS OF THE CAMERIDGE UNIVERSITY TRESS

Bentley House, 200 Kuston Road, London, N.W. 1
American Branch: 32 East 57th Street, New York 22, N, ¥,

©
CAMBRIDGE UNIVERSITY PRESS
1958

www.dbraulﬂﬁ"\il‘y,org,in
A
&
R
O

Printed in Greas Britain at the University Press Cambrid,
{Brooke Crutehiey, University Prmte;] v



Preface page Xiti
Chapter 1; FREQUEYCY DISTRIBUTIONS

1-01 Introduction 1
1-02  Froquency distributions A Ky
1-03  Tllustration of the practical applieation of statistics ‘:'\\\41
1-04 Characteristics of a frequency distribution ,,:}‘ & 8
1-05 Caleuiation of the mean ¢ \;\ 8
1-06 Moments _ \“\ 10
1-07 Formulae for the moments in {erms of i;hf},@g mterval ¢ 13
1-08 Example of the calculation of mnmnn'r;-s.t\ v 13
i-09 Skewnesé and kurtosiz . :’:: v 15
1-16  Relative frequency Q :3:}’ . . 17

wwindbraulibrary.org.in
1-11  Conftinuous frequency dis‘oyﬁjgﬁons 17
1-12 Moments for oontinﬂmu{freéuency distributions 19
1-13  The normal irequen&if}dlbtrlbutwn 21
1114 Intograis &ssoczatx with lhe normal fuonetion 22
I-15  Properties Qﬁ‘t,he normal distribution function 26
i-16 leamI;lre;‘sf"a normal digtribulion 29
117 %he@&fd 3 corrections a2
1-18 .K*@tc on the evaluation of erf ¢ 33
- "\,
! gff?)tf".‘ : ERRORS O0v OBRSERVATION AXD THR
PrINCIPLE oF LEAST S8QUARES

2-01  Tntroduetion 35
2-02 Instrumental srrors 35
2-03 I’ersonal equation 37
2-04  Bystematic error 38

CONTENTS

N\



2:05
2-06
2.07
2:08
209
2-10
2-11
212
213

2-14
2-15

218

217
2-18
2-19
220

Conients
Accidental error pteg
Summary of errors in general ith
Combination of observations i

Observational equations in one inknown n

The postulale of the arithmetic mean 41

Residuals A
The principlo of leas! squares I\
Biandurd error e UL
fr] "'\\":;
The formulg pf="—2 N 17
# ft—1 \ \v/
) :N."
Tlustrative example " “\ > I
Observations in which a constant 8y :.tem&{m\rrm i3
present an

The standard error of a lincar tunatw&‘t\\f twa independent
variahles \ ¢ G

7

Hypothesis of elementary m:{or% ) 53

The normal law of err ors. n’ N Bt

Tho moedswh :éb:fapiebiﬁlﬁ:iwrg in 38

Test of the IIUI‘II"I&]:‘I&VF. of errors it
m\

Chapter 3. PRO}\:\@\:TJT AND THE NORMAL Law

3-01 Prol:abkhﬁy g

302 f:mp(}m{n:l probability b2

3403 ;1{&'!15:5; dertvation of the normal law of crrers 63

3 @ﬁw pestulate of the arithmetie roean 155

E“\..faf’f)n Continuous probability Hi

,<> “ 306 Herschel's dori vation of the normal law i

307 The luw of errars for a linear 1 unetion i34

308 The law of errors for a linear fun ction {alternative rroof) 71
Chupler 4: MEASURES o Prucisrox

401 Introduction ]

402 The normal lame



447

4-04

4-04
4-018

4007

4-08

409
410
411
412
4-13
4:14

4-15
4-146

Contents vii

The formula p= - Tor a continuous distribotion prege T4
A2

e - 1 . . . -

The formula p=——_ for discrete observations 15
hy2

The formula for g in terms of the syuarcs of the residuals 76

The stundard error of the arithmetic mean T

1
The formula g =i
b

Potors’s formulae for g and i torms of the numerical L
Ha ~

values of the residuals \
\
N\

Probable error N
. . A7
Remarks on measures of precision SV

¥ o\

N’

Summary of rukes

Example 1: ihe position angle of a doubl@i&bﬁ'
&

Fixample 2: the mechanical equivalent’b}\hcat

The standard ervor and probable errew of o linear funetion
. a . «
of independent variables PN\
V‘~,
aNX Y

Musirative cxample

Precision of the %tandard éﬁ’ﬂ"{?ﬂh}‘aﬁlﬂbl@f@bbﬁ"f g-in
~\

Chapier 5: M \%L’RF\\)I‘ PrecIisTox vOor WEICHTED

401
5-012
03

OBsERYALLIONS
79N
Weighting n} Ghservations
W f:‘lgh?'\!?f} according to 1the number of observations in & sct

Arh«}} sary welghting

5 04 ‘“"mghtmg according to standard errors or probable errors

{o\;

506

n-08
5-09
410

J_ho weighted mean 1z the most probuble value of the
unknown

Redustion of weighled cqualions to equations of unit
weight

The formula #U_E.t :‘J

The precision of the weighted mean
Summary of furmnlae

Txamples

g

a4
100
101
102
103



viii

Contents

Chapter 6: F.QTATIONS OF CONDITION IN SEVERAL

UxgNowNs
601 Linear equations of condition prityge LT
602 Equations of eondition in functional form H
6:08 Fquations of different woights ]
6:04 Normal equations 110
605 Checks in forming normal equations !}i
6:06 Example of deriving normal equations (Causs) ' 1 2
6-07 Residuals \' '\.."\i 15
8:08  Ganse’s example (evaluation of [vu]) 3 NS 1
609 TFormal solution of the normal equationy ¢ : 3 117
6:10 Properties of &, § and ¥ " :\ v i19
811 Suramary of formulao \ ' o
[22] D 121
6-12  The formula g2 e ’\ S -
613 Precision of 2, y, and z, \ O 123
614 Ganss's example (precision ??, ;E)flltions} 124
615 GauSS’a\mﬂwﬂmﬂsrﬂvi!@:ﬁ?éﬂm'mal equations and _
evaluating the weightsof the unknowns 126
B:16  Causs's oxamplo (sdlibion by Glauss’s method) 130
617 Checks for Gss@éé;’;nethod 122
618 Alternative{thothod of caloulating woights 134
619 Bquatidn$of condition in two unknowns 135
6-20 E:i(aé%lp}; {two unknowns) 136
621 Wyuations of condition with raore than three unknowrs
0" (Ganss’s method) 139
.\6152' Othor methods of solution 142
;6-23 Fvaluation of tho unknowns in equations of condition
connected by rigorous equations 144
624 Tustrative examples 147
635 Precision of g fanstion of several unknowns dotermined
from » equations of condition 150
626 Procision of the ¢toordinates of the splap apex and of the
solar velocity doriveq from measures of radial veloeity 152



Contents ix

Chapter 7: THEORETICAL FrREQUEXCY PISTRIBUTIONS
7.01 Calculated and theoretical moments page 153
702 Representation of a frequency disgribution by a

polyriomial 156
7-03 Representatlon of a frequency distribution by 2 trigono-

metrical series 157
7.04 Precision of the constants 159
7.43 The Gram-Charlier series 160
w06 'Fransformation of the Gram-Charlier series 16k\
7-07 Hermite's polynomials . ~162
7-08 Expression of the constants d, and 4, in terms of t-he,.,f N

principal moments '\ & 164
7.00 The characteristics of the (Gram- Charlier geries % 166
7.10 Theoretical frequency distributions derived ftdél an

assumed differential equation y \ 166
711 Standard form of the differential cqq{i.ﬁioﬂ 147
7-12 The theoretical principal momen;-é}; \\ 168
7-18 Skewness and inflexion wu'r‘i«;cl braulibrary.org.in 170
7-14 The theoreticat dist-rib1£c-'{)ns 170
7-153 Curves with mode Kt@fiéin 171
7-16 {Curves when b= 0 75
7-17 Curve wheny fh}a Aoote of the auxiliary quadratic are

unagmact"‘y& 176
718 Cuweivhen the roots of the auxiliary quadratic are equal 197
719 (’1?‘1"' a3 when the roots of the auxiliary quadratic arc mequal 179
74 '0'\; "E}fxample of a Pearson curve 185
Chapter 8: CORBECTION OF STATISTICS
801 Possible rejection of an obgervation 189
802 Chauvenet's criterion 19¢
803 Sheppard’s corrections to momenis 191
8-04 Tho correction of an observed frequency distribution 1493
805 Eddington's solution of the integral eguation 197



X Contents
8-06  Selution in terms of differences porege 197
807 lustration of the carrcction of a frequency diztrihution 148
8§08 ‘Improved® valuc of & measuro 11
809 The integral equalion 200
8§10 Fowrior transfonns 200
811 Holution of the integral oguation 202
812 Application to normal funetions 2403
813 Application to the Gram-Charlier series OV 204
8:14 Correction of veciors \t\ 206
813 Correcliou of the mean of the observod lndD'l'lllLH]V:‘Qf

vectors A 2080

) '\’\.

816 Relative frequency of the magniludes of \(\(_‘T,[}I“:

exceeding a given value 210
817 Example of the correction of the mm}h.‘&m(‘r vid

magnitade of vectors N\ ).
518 “Improved’ value of the mmm;ﬁl;le’;)f an observed voctor 212
819 Correction of a function of \*e‘f;ims by the mothod of

OPCLELGFG d br au[lbl ar y‘mg in 215
Chapier 9: CoRR# LA’l;IQ‘ﬂ
9:01 Tntroduction \'\‘w’ 217
202 C()V&i"ld&l(‘@‘ D 215
%03 Lines of }egro‘sqmn 237
9-04 '1he\corr(\-la,t-i0u eoefficient 222
q'ﬂr.\ a“’Plf‘ on the ealeulation of the correlation cosMcient 223
9. "\QE‘; Contingenecy tables 22

\”?,)*67 Example on the use of o contingenr_:y tahlo 225

9-08  Parameicrs for continuous bivariate digtribubions 238
9:09  Normal bivariate distributions 223
9:10  The constants of the nornal bivariaie distribution in

terms of o, o, und » 231
911 The probahility ellipse 234
912 Curved lines of regression for digerete distributions 235



Confents xi

918 Correlation ratio for a continuous bivariate distribution  page 237

914 Contingeney coefficisud 258
915 The eontingsney function o for a normal bivariate
distribntion 240
a-16  Nomnal trivariate distributions 242
317 The constants of the normal trivariate distribution 213
2 " .
Appendiz 1. VALUES OF erft=- ,.—J e~ dt 246
Ao <>)
Appendin }{v). VALUER OF {1—crf ) (_'3?4
g ¢
Appendin 2. VsLUES OF G (2,;& 3240
Appendiz 3. VALUES OF Rt \\{Q 251
D
Index \{5\(2} 251
’\\\‘

\x&\%ﬁdbra ulibrary.org.in
A
&
é\&\/
O

s/



PREFACE

The subject-matter of this volume may be summarised briefly as the
study of frequency distributions encountered in many branches of
experimental science, and the treatment of chservations and measures
in which the ncidence of errors is recognised. Most topics in the
book have formed the substance of lectures for students proceeding
to an Honours Dogree in the University of Glasgow, during the past
vwo decades. )

Chapter } deals with frequency distributions as viewed agains,t't:h\e-"~

background of general statistical theory: the various techniguesre-
lating to moments are considercd in some detadl, together&rith the
integrals, assoclated with the normal function, which fogn"thc bagis
for many of the subsequent investigations. )

The next fivo chapters are concerncd with the tregtment of obser-
vations and measures subject to errors, the geqe;tjal‘foundat-inn heing
the normal law of errors. It is not too malsh™to aflirm that an
observational or experimental Tesult is tog bevjudged in the absence
of systematic error, not by its apparentiagreoment or disagreement
with some other result proviously obfdimed, but on the ascertainable
degree of preeizion of the actual \ggﬁen;fg’giorllsbor mneasures rclating to
the investigation concerned. I[tst i necessary thitthe rules for
deriving the degree of precigieuof a particular result should be ex-
pressed in some standard(ferm which has upiversal sanction. In
much of the earlier litératurc one of the measures of precislon is
known by the cumbrous expresgion of ‘root-mean-square error’; 1
have replaced thig@aportant quantity by the simpler cxpression of
‘gpandard errox\s¥hich brings it into line with its cou nter-part,
‘standard dr;\f{g%tlon > in the theory of statistics. Proofs of the normal
law of erpers and associated theorems are given in those chapters,
with dué,:regard to the various hypotheses which it is necessary to
introdute if a mathematical formulation is to be achieved,

“Th ¥everal examples worked outb in the text, one being intentionally
of % highly artificial eharacter, my aim has been to introduce arith-
metic sim plicity so that attention might not be diveried, by elaborate
computational details, from {undamental principles and practical
methods of procedure; the complete investigation of Gauss’s well-
known example involving three wnknowns (Chapter 6) is a case
in point.

Chapter 7 deals with the representation of a frequency distribution
in various ways according to the naturc of the series of measures
recorded in particular observations or experiments, the object being

A
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Xiv Prefoce

to derive a mathematical expression which best represinig the
practical results: in particular, there are detailed discussions of the
representation of measwees by o Gram-Charlior serics and of distri-
butions derivable from Pearson’s ditferential cquation, with an
example of the latter faken from curcent phrsical literaturme,

Chapter 8 deals with the corvection of frequency distributions, the
subject-matter Including Sheppard’s corrections to moments, the
application of Fourier {ransforms and the corvection of vectors,

The final chapter introduces the subject of corcclation. the @ nf
contingency tables, and a discusgion of nortal Biviriate and
variate distribntions. )

In the appendices are to be found tables of severa \ll}t RTINS
cluding, in particular, the ervor tunetion: as wmudmﬂlg latter § am
indebted 1o the Royal Society of Edinburgh for pedistion io make
usc of the claborate tables exiculated by T Bm‘ﬂ«\\[ Trens. Ry Soc.
Edind, 39 (1898}, 237-321},

It may be added that no claborate equipgpnt is recossary for the
stalistical condoct of the various typesgdfinvestigation with which
the book deals; Brrlow's Tables, € reddd ) ec?zramdﬁ no{multiplication
tabler) the ugunl collection of IOW‘LIL‘H]]HIC tahles, and possibly a
caleulating machine, suffice for Lhe arithweric com putations.

In conclu@non I am again Lnr.bc,h indebted to the officials and staff

of the (Jambm(,}m&mmrbﬁafjﬂmm irr their care and attention during
the course of printing.

K WAL
UxwiversIty OBsne RW;TORY

GLASG O%é\

13 June 1957 L)



CHAPTER 1
FREQUENCY DISTRIBUTIONS

1:01. Intreduction

Tn this chapter we deal with some general principles from the view-
point of the theory of statistics in preparation, to some extent at
{oast, for the more specialized study of the theory of errors and related
subjects. Statistics is a bran ch of mathematies concerned, in its
gimplest stages, with the study of the detailed information relating o)
some specific characteristic such as the woight: measures of national”
corviee Tecriits or the marks scored in an examination; in soma of'the
subsequent chapters the emphasis is on the study of obaexatiens or
measures in which the appearance of unavoldable c"pq:r% iz fully
recognized. \V

A= a typical example, illasirating the initial methdds of statigiies,
suppose Lthat the sehool authorities of a vity proWide the individual
measures of the heights of a thousand boys be%n’ging to a particular
age group. This muss of information is not readily comprehended as
it stands, and the first task of the st-at-isyieign"is to have the information
arraneed in a suitably manageable el condensed form. This is done
most conveniently by derivi_ng‘ﬁi’é"tﬂ?ﬁi%?'@f%ﬁﬂ;g-i\-’&it-h heights,
for example, between 40 and 41 in®, between 41 and 42in., and so on;
therc is now a much clearef pieture of the numerical distribution
according to height groagps, This condensed information can now be
displayed by means Qf\ graphical representation from which the
distribusion in the sevdral groups can be scen abi a glance.

Associated with tHis distribution are cortain calenlable quuantities
which specify j{hé"éhief characterigtics of the distribution (with these
we deal la.t%'"),\émd so the original mass of information relating to the
heights of'e thousand boys, perhaps arranged initially in the most
haphazasd fashion, is finally replaced by the graphical representation
:mdit:-}}eée calculable gquantities. It is thus possible 1o interpret the
s‘t@t\is‘éics as o whole and, possibly, to suggest uses to which this
information can bo applied.

A gecond example of & less simple nature, taken from astronomy,
concerns the stars of the main sequence for which detai led information
had been accumulated relating, in particular, to luminesity {or
intrinsic brightness), effective tem perature (or, more erudely, surface
temperature) and mass. In the early years of the present century it
was found that thereexisted adefinite relationship between lu minosity
and gpeciral type, later translated in terms of tomperature. Further,

I 5C0



9 Frequeney Ihistributions [1-01

it was seen that the most luminous stars of the main sequence were
also the most massive, and the feeblest the least nissive., Here was
a challenge to the theoretical Investigalor of the physical eonditions
within a star, culminating (in 1924) in Eddington’s discovery® of the
‘masg-luminosity relationship’,

Not infrequently, the characteristies of a statistical diztrilmation
relating to a series of observations or measures have led Lo a greater
ingight into the particular problem under consideratiom anc to new
discoverics such as Bradley’s discovery of aberration and niiation
referred to in §2-04 (p. 39). Q

(\NA

1-02. F¥requency distributions O

We consider as an example the statisties relating !.P)}‘L;}le heights of
& thousand men in a regiment. To condense theigfotmation con-
venicntly, we derive the number of men ingeash” of seven groups
according to height; the first group relatesddvheights between 62
and 64 in., with 63 in. as the ‘middle hcigh@ Jhe second group relates
to heights between 64 and 66in., Wit-l@i{i i, as the middle height;
and o on. O

The number in any group is called the frequency for that group,
usually denoted in statistical theoty by f, with sutfices 1,2,... to
indicate t-hqg;}q@@&%ﬁﬂ;ﬁ;%’jﬁ yyi the frequency for the ith group
is denoted by f,. The statistics for the seven groups ure shown in
Table 1, the middle heishts being shown in the second row and the
corresponding frcqu{&u{(zies in the third row.

~
Table L. Disiribution of heights of 1000 soldiers
Group N/ ... 1 2 3 4 5 6 7
Middle/bgight (in.) 63 65 67 69 7l 73 78
Freqteney (f) 20 80 180 230 280 170 10

\‘\
Whe method of displaying the data in table 1 is shown in Fig. 1.
. in which heights are indicated horizontally and frequencies are in-
\ ) dicated vertically. Consider the first group; the range is 62-64 in.
{4 to €' in the figure), and the frequency is 20. Erect a rectangle
ABDC on AC as base and height AR equal to the frequency.
Repeat this construction for each of the groupe, thus obtaining a

T A, 8, Eddinglon, Mon. Not. B. Astr. Soe. 84, 308, 1924; 3ee also Tnternal
Conetitution of the Stars (Cambridge VUniversity Press, 1926), p. 116,

i When we are dealing with observations of, say, & particular characteristic
of a star or of the measurement of a physical guantity, the torm eorresponding
10 frequency is callod theweight, usually denotod by w, with the appropriatesuffix.



1-021 Histogram and Frequency Polygon 3

series of Tectangles, Since the bascs of the rectangles arc equal the
vatios of the reetangular areas are equivalent to the ratios of the
[reuencies.

“uch a disgram is called a histogram and it gives a condensed,
although not wholly complete, picture of the distribution of heights
amonget the thousand soldiers.

A second method of illustrating the distribution of heights con sists
in drawing, in Fig. 1, straight lines between the successive mid-points
P, P,, ... of the upper horizontal sides BD, F'@, ... of the rectangles

300 300
s
P N
N/
250} 4] 4250
Al 3
. '\\
200 P:,’/ \/ —200
&
L3 -
130 =, —{i30
2
=
100 Wl 100
3 g I"F2. 10
rlzl e B
S0 R\ 4 50
P \\‘
B D . P
y Pe \ Helght E
6 6l k6 68 o 72 74 75
xt\'“j Fig. 1
."\".

forming t-he%ifr)gzt-m. The saccession of straight lines PPy, o Py, ..
is calledtafrequency polygon; the coordinates of each of the vertices
P, PN relate the frequency in a group to the middle height for that
greup. Like the histogram, the frequency polygon gives a reliable,
although not wholly complete, representation of the distribution of
heights.

In Fig. 1 the width of each rectangle is 2in,; this is called the elrss
interval, which we denote by ¢.

For any set of stalistics the choice of clags interval is dictated in
practice according 1o cirenmstances, the principal factor being the
total frequency—in our example this is the total number of soldiers
furnishing the statistics, namely, one thousand. If we had required

I-2
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4 Frequency Distributions [1-02

a more detailed picture of the distribution of heights, we could have
taken the class inlerval to he 1in., in which event, we wonld derive
the frequencies corresponding to height groups 62-63, G3-61,

The histogram and the frequeney polygon would then be constructed
according to the principles illustrated in Fig. 1.

103. Illustration of the practical application of statistics

The mathematical developments in the theory of statistic: have
become so recondite in recent vears that there iz u dunger eflover-
looking the ultimate aims of the collector of statistios, \\huh are,
first, the interpretation of the data and, sccondly, the pmmln]ltv of
using the resuitz for some well-defined purpose. \,

Az an example which is instructive—and may e aﬂummai ing and
coraforiing Lo the student—iwe consider the 1%111’;5 O\i wit exanination
taken by 800 candidates sand for which the m'ti}mum marl is 200;
for simplicity, we shall assume that no cantidate has scored full
marks. N

In Table 2+ the numbers, denoted bx‘f of candidates with marks
between 0 and 24 (both inelugive), betigeen 25 and 49 (both b inelusive),

, are shown in the fourth row, thethird row containing the middle
ma.l'ks for the several groups. .‘.’:'"

www.dbra ulibrar.:;yv \org.in
Table 2. Distribdifion of marks in un examinglion

Group ... 1 | 3 4 5 ] 7 3
Range of marks >4 €349 50-74 75-09 100-124 125-140 150-174 175-18
Middlo mark N8BT ez 87T 112 137 162 187
Fregquency {f) 24 it 120 1685 184 160 64 16

22 88 208 316 560 720 T8 800
V (% of U)’\:“. 3 11 26 47 70 4o 98 10¢

Thitehd of drawi ing a histogram or frequency polygon we adopt
8 blﬁ‘f‘d method which consists of constructing a curve, known as an
ogwe curve, based on the numbers, T, of mnd_ldatc& who obtain less
‘thd.n 25, 50, 75, ... marks; 1these numberb are shown in the fifth row
of the tahle. Thus, the candidates who fuil to score 30 murks consist
of those in groups 1 and 2, and the number, T7, in this case is 24 4- 64
or 88 similarly, the c-zmdldatch who fail to score 75 marks consist
of those in groups 1, 2 and 3, and the number is 88+ 120 or 208;
and 80 on.

. . . .
T To enable tbe reader to concontrate on principles rather than an arith-
metical details the frequencios, f, in an actual examination have hoen rounded

off’ to tho nearest multipls of 8 so that the percentages in the last line of #ho
iable are integers.
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The last row gives the percentage, T, of candidates failing to score
25, 50, ... marks,

In Fig. 2 marks are indicated on the horizontal axis and the values
of ¥ on the vertical axis; the values of T in Table 2 are plotted against
the corresponding marks 25, 50, 75, ....

Suppose that the statistics in Table 2, together with Fig, 2, refer
to a final degrec examination in chemistry for the ycar 1957: we
agsume, further, that a similar treatment of marks was made for the



6 Frequency Distributions j1-03

eorresponding examination in 1956, Now, us a general rule, examiners
attemut to set papers of egual diffionlty from vesr to yeur and, with
large numbers of candidates taking the examination annmally, it
may be anticipated that under normal circumstancest the perren-
tage of failures would remain substantially eonstant from sy ear to
year,

Suppose that, in 1956, 40 of the candidates failed and that it is
desirable to keep the standard of performance—as reckoned n this
way—uniform from year to vear. It s seen at once from Fig, 2z4hat
a failure of 40%, in 1957 corresponds to the absciss indicatdd by
the point A, that iz, to a mark of 02, Tf { he standard ix to b Mindly
followed, all candidates with marks nol grester than @2ywénld be
adjudged to fail. In actual practice the exauniners would oive caretul
attention to all ‘border-ling’ candidates with marks, $ ¥, belween
87 and 99, and, following a detailed serutiny, ofSghir seripts, they
might feel disposed to readjust the marks efvsoveral candidates,
increasing the marks in some cazes and dithihishing the marks in
others, Lo 3

Alternatively, if the pass mark in\(998 was 100 with 402 of the
candidates failing, the curve in Fig ¥ shows that in 1957 the per-
centage of candidates failing to reacl 100 marks is 47 . This suggests
either that the paper (or papersjgct in 1957 was harder than the paper
{or papers) set il gbbauh Biabfinraiftdidates in 1957 were, as a whole,
gsomewhat inferior in abjlity*to the candidates in 19536, The business
of the examiners in sndh'an event is to effect some comprontise in the
light of relevant inferination available to them, such as the general
quality of the wgﬂ&_ suthentic reports of serious epidemies in schools,
teachers’ cstim@bes, and so on.

¢
104, 'Qi;}facteristics of a frequency distribution

(i}x;’ﬂﬁ inean. We lake a simple example. 1f f, men cach carn )
shillings per week and f, men each earn iy shillings per week, the

NS - - k] .
sotal number of shillings earned is Frty+ fux, and the mean wage is

o

Nz fawa) [ fLHfo) shillings per weck. Generally, if w,, @, ..., %,

are the weekly wages of f,, f,, ..., f, men respectively, the mean, @,
is given by

N F o
hatheyt .+ fe, 2O

xr= - . AL el R
fithr T T4
=1

{1}

T Abnormal circurmstances would includo,
of education, to different degroes, in difforen,
sealo illnesss or,

for oxample, tho partial dislocation

; t paris of the country due to large-
ag was found hotween 19239 and 1845, to war-time conditions.
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Here we regard 2, %y, ... a5 the particular values of a variable »,
usually veferred to in the theory of statistics as the variile.

Let & denole the total number of men concerncd—-or, in statistical
language, the total frequency. Then '

N=fi+fot - tfu= Eﬂlfvf

and (1} becomes F= ,t: S fir. ' (23
+ 1

This formula ig applicable in all such problems where the fre-
quencies associated with particular values of the variable are givefly,

{iiy The madian. The medisn is the value, m, of the vapiahier
dividing the distribution of gtatistics such that the frequancy of
values less than m is equal to the frequency of values greater than m.

Referving to Tuble 2 (p. 4) we see from the values of €/that 376
candidates have marks less than 100—that is, up 8 99—and that
380 candidaies bave marks less than 125—that ighup to 124, It is
evident that the median, m, lics between 99 an@h124 marks. More-
over, we could ascertain the median maekby examining the in-
dividual marks of the 184 candidates in geoup’ 5 (marks between 100
and 124} by arranging these in increaging numerical sequence and
noting the mark not exceeded by the first 24 candidates in the group,
24 b(\_ing the balance befween :%'Tﬁ’\@!’!“ftmaU[ibl'ar‘y_ol'g_in

This procedurc s tedious and 1o practice we procced as follows, If
it is assumed that the markg ™ group 5 are uniformly distributed in
the range 100-124, we hwg b find the mark, 7r, such that 24 out of
the 184 candidutes inth \group have this mark. Then

O m=99+34 . 25=102:3,
or, to the 11ea(’.egt integer, m =102

This resiitds verifiable from Fig. 2, being the mark associated with
309, of the candidates.

Gidhe quartiles. The quartiles are the threc valunes of the
Xﬁf‘f&:ﬁle—g, , g, and gg—such that tho frequencies for values of the
viriable between 0 and ¢, , between g; and ¢y, between g, and g,, and
between g, and N (the total frequency over the whole range) are all
equal, each being $N. It is evident that g, is the median.

The practical method of caleulating gy and g, is the same as that
for calenlating the modian.

In the theory of errors the quartiles g, and g¢; have a special
significance (sec §4-09).

(iv) The mode. The mode is the value of the variable for which the
frequeney is » maximum.
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Table 1 shows that the maximum frequency in the various groups
is 280—in group 5~—corresponding to the middle height 715 this last
numher is the abseissa of the point, £y, in the frequency polygon
(Fig. 1} corresponding to the frequency 280; socordingly, the mode
is 71.

If we had taken the class interval to be, say, a half of that towlhich
Table 1 refers, the value of the mode found in this way may be ox-
pected to differ slightly from the first value 71; the value of the mode
is thus dependent to some extent on the selection of the class infepval.

N

1-05. Calculation of the mean RGN

Ey 1-04(2), the mecan ¥ of the » diserete values nyp, :r'g:,\...., x, of
4 variable x, with frequencies fi, fu. ..., f,, is given sy

1 7 ¢
Fmn Dhite NS (1)
NS /

Considering our cxample in §1-03 wesladi find # accwrately by
forming the sum in (1) by means of thelfFéquencies associated with
the individual marks 0, 1, 2, ..., 198 Phis would be an intolerably
long and tedious caleulation. . N

We can condense the caleulatian)’ and obiain g sufficiently reliable
value of Z by assuming thatodit the first group (Table 2, p. 4), the
average rr1arl¥’8‘f“ﬂ?l'?fi%!:@..%ajﬁ-t%ﬁﬁnthe group is tho middle mark 12
for the ranpe 0-24 maflys; then xy =12 and fi=24 Bimilarly, we
assume that the a-vgga@& mark of the 64 candidates in group 2 is the
nwiddle mark 37; $hal] #,=37 and f,=64. The remaining groups arc
treated In a siilar way. Our calculation for Z, by means of (1),
wonld then b\e’ ™

\ B=[24.12464.3T+... 4 16.187),
&
wx’her%(}’\"——— 800, It can be verified that 7= 1002, or, 1o the nearest
il&t@gcr, Z=101. The calculation is still long and tedious.

3 ¥To simplify the aritbmetical work still further we introduce the
“following device., Let @ denote a convenient valze of the variable

which we estimate to be in the neighbourhood of . Let
:t:,;:a--{-g.;, (2)

from which the values of £, {which can be positive or negative) ave
readily derived, Then,§ by (1) and (2),

Nr=Xffa+E)=alf,+ 5f.E,, (3)

1 In {3) and elsewherd the limits 1 to % in the summations will be omitted
for simplicity when no confusion is likely to be caused,
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Let £ denote the mean of the quantities £, with frequencies f;
then NE=2f,£;, and (3) becomes

Nz=Na+NE

oF F=a+i, (4)
This formuia is the appropriate one when the class interval is
unity. When the class interval, ¢, is different from unity, we can

simplify the computations still further by writing
Ei=oiy, (3)
from which Zf £, =cXf,%;, 50 that
E=ci, A\ (6
“ here # is the mean of the quantities %, with asaoclateckﬁequenme%

Formula (4) then becomes )
T VT W {7}
e,

We use the slatistics of Table 2 to caleul ate Jfitat by means of (4)
and, secondly, by means of (7); the detailyare’found in Table 3, the

~ceond column of which gives the middig: aark of each of the groups

and the third colunn gives the cor re&.}mndmf; frequencies.
wiwwtdbraulibrary org.in

Table 3. ¢ alcu?ahon of the mean

) (2) (3) g@» (%) (6) (7
I,c_ Q,t'
(midfdlr: A \\

Group  mark) s .,: » . £ fi&s g Jirig
1 i2 N —100 — 2,400 —4 — 96
: 97 ‘.\’..64 — 75 — 4,800 —3 — 192
3 62 0120 — 50 — 6,000 —2 — 240
4 g@x\‘w’ 168 — 85 — 4,200 -1 --168
5 J1>2 1584 0 — 17,400 i — 696
G 180 + 25 + 4,000 +1 +160
T N\ U162 B4 + 30 = 3,200 +2 +1498
8\ 187 16 1+ 75 + 1,200 +3 4 48
AV 300 - 8,400 +336

Sumiery ; N=800; Xff= —0000; Zfu=—360.

As a rough guess the mean mark ¥ is between 87 and 112 (groups 4
and 5) and, since from column 2 the class interval, e,1s 23, it is evident
from (55) that it would be convenient to have the values of £; given by
multiples of 23, for then the values of «; will be integers. A value of ¢
sutisfyin g these desiderata is clearly 112.
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In colomn 4 are to be found the valnes of £, and in the next column
the values of f,£,; the sum of the n cgalive values of f.£, is shown near
the middle of column 5 and the snm of the pogitive values at the
bottom of the eolumn; these valucs are — 1 7,400 and + 8,400 respec-
tively; the final sum is then — 9000, as shown in the sum niary af the
foot of the table. Henee, by {4}, since the total f requeney, &, s 800,

F=112+ ghg( — 0000) = 1003,

or, to the nearest. integer, F=101, agreeing with the result predonsly
stated. N\ ¢
In columm 6 the values of #,, based on {3}, are given and S’ he last
column the values of £, are found, with the negative(ayitl ‘positive
sums shown as in column 3. The value of 7 is gi'vcn(h..}}"
T=ghg(— 696+ 336) = — .2 . )
and hence, by (7), )

T=112 - 25 5= 105N :

or, Lo the nearcst integer, T=101, 7 ‘\\ .

The advantages of the second mctJ‘u'rh (that involviug @) over the
first method (involving &) as 1‘ega-:1jd§ simplieity and economy of
catoulation are sufficiently obvious to require no further emphasiz,

%

1:06. Monyeygdbrauli bwr'y torgn
Consider the frequepéy polygon in Fig. 3 with n vertices VLA
£, and, in particu’] ary he ith vertex, B, corresponding to the value,
x;, of the va-ria,biﬂ\.,\iii the figure, 0@, =2, and Q:P=f,. Let A5 be
any line paralléh to OF and denote the abscissa of 4 by a.

The »-1h, prgrent of the frequency distribution about 4 B—that is,
about thg\:llil}e’ T =g~—is denoted by u,(a) and defined by

O\ 1
D 1@ =5 B i —ay, (1)

~rbeing a positive integer, including ero.
N\ Write, as before,
\ 4 Li=m;,—a. {2)

Then, as in 1-05 (4) E=F—u. {3)

From (1) we then have, by means of (2),

1
/‘r{a)zﬁzﬁ'&" {(4)

Wo refer specifically to the al

gebraical quantity £,=z —a as the
deviation of x, from a; the values « Y &=y

of £; may be positive or negative.
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The principal moments arc those taken about the mean of the
values o, that is, about the line x=Z. The principal moments are
denoted simply by #,, so that

I -
ﬂrzﬁzf«;(x«;—x)r- (5)

The line =7 iz uznally referred t0 az the centroid vertical.
In particular, from (5) and (4) when r={, we have

1
Ho=pol@)==52fs;
henee Ho=gtgler)= 1. ({@\

o

In gencral, the formq]a,\{ﬁ)\bocomes, by means of (2) and (3),

1 T b
O =g SEE )
£ :'../ Fi
or, On eXp&llSil’zn; :\’/

;a\,\\QIvf £ ESfE T

I'Ienga;‘hy (4,
ON\’ “,' 1)
\,) #‘f:f&r( ) “‘#‘r 1( )+

the general term bemg

( gzz]gz” ]

ng‘tr 2. (8)

—1).. r=k+ 1),
e T e, ).

The caleulation of g, is most easily achieved by first caleulating
the moments ahout 2 =g, where a is conveniently chosen, and then

applying {8).

(=1 —



S

¢ From (8),

h
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12 Frequency Distributions [1-06
(i} First moments (r=1). By (1),

I 1 e
—_E A, — =37 T— o f.:
Aﬂ'l(ﬁ"} - ;'V ff,( £y a’) A‘T Zf‘! x; i\r z‘fz H
but 2f;2, = ¥% and 2f, =N hence
tla)=r—a=g. (9)

In particular, if @ =0, then z,(0) =, that is, the hrst moment about
the line =0 is the mean, . The formula Q|
1 ~ O\
m(0)=5, 5, _
is identical with that in mechanics for d et-crmEniugﬁ-iiéf::;:- coordinate
of the centre of mass of masses [, Fos oo fa pl@cd at the vertices
5, B, ..., P, of the frequency polygon in FighS)
From (5), the principal first moment, £y 8\given by

Npy=2fx,— \{‘; i}

Hence we have the important resulg® ilsfmely,
I z (f {L6)
This result (?Mal}@.@fﬁ]t@lllﬁli‘éi%{;ﬁif&}iﬁOIH the general formula (8) on

making use of (9) and (6). ™
{ii) Second nwme-nts{?:ZL By (1)

&N afe) = B o, — apr = 3, 2 (L)

This formula i iflentical with that in mechamies for determining the
moment of if}efti& about A8 of masses f,, f,, ... foplaced at P, P,,
vy By ingKer 3. '

T e;iiqrm ula (11} shows that p,(a) is the mean of the gquares of the
dovintions of the variable with respect to @; py{a) is referred to as the
R square deviaiion.

#a=itfa) — 2By (a) + E2pay(ar),
ar, by (9) and (6), =) — B (12)
or H2= a2} — (F—u)2, (13)

(i1) ¥, a-r-ia.?we and standard  deviation. The principal second
moment, 4, , is ealled thevariance and ia denoted by the special symbol,
a?; thus, from (13), 2 -

T =ty = pto{a) — (F— )2, {14}

Also, o is called the stendard deviation.
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The variance and the standard deviation are important gunantities
in the theory of statistics,
{iv) Third momenis (r=23). By (1) and {4},

Npya)=Zf(w,—u)P=Zf,E].
Again, by (8), 5= py{a) —3Epa{e) +38%,(0) — B,
or, by (9), s = pofa) — 3Ep{) + 222, (15)
(v) Fourth moments (r=4). By (1) and (4),
Npy(a) =Xf (e, —m)t= Ef;EL
Again, by (8),
o= jigla) = 4Epg(a) + 68%mfa) — 48 m(n) + 81, U

%

o by (9), g pal) — 4B 6B — 38 Y (19)

The formula for the prineipal moments of higher order, if roquired,
can be derived in a similar way. v’
1:07. Formulaefor the moments in termgQﬁh‘le class interval ¢
Write L=t —0= o N )

Then Npda)=Zf {x,— ﬂ;‘)‘; SCS
\a\rw{nr_dbr‘au[ibl_’ar‘y.m;ﬁim N i
Tt is convenient to denote the rthimbment of the quantities u, with

~

respect 10 @ by g« so that ‘ﬂ;,(a) =Xful. Hence

(@) =cpla). ()

The procedureis t-hqn}r} derive the numerical values of the moments

stoir), from which theyalucs of the moments g, (2} arc at once found
by weans of (1} NS

The princigs’ﬁ\ shoments can then he obtained by means of the

formulae in&hc previous section.
O :
1-08. ‘Il;’i(a:mple of the calculation of moments

’W;'ta-ke as an example the following statistics relating to the
\Més of 800 workmen in a factory: % men each carn 125s. weekly,
24 men cach carn 135s. woekly and so on. The value, w, of the weekly
wage in each of 8 groups is given in the firat column of Table 4, with
the frequency f in the second columi.

From column 1. the cluss interval is 10; it is then convenient o
take o as 163; the deviations, £, from ¢ arc given in column 3; the
valuce of » (=£/c) are given in column 4 and these are positive or
negative integers. The cntrios in columns 58 are then inscrted.
Columns 9 and 10 will be discussed later.
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Table 4. Distribution of wuges

(@ (3 {4) {5) {4 (7] (8] )]
x b £ u S Ju® fub Jud 7
125 8 —40  —4  — 82 128 — 512 2048 | %6
135 24 —30 -3  — 72 216 — 618 Ju4d | 24
45 52 —20 -2 104 208 — 416 s32 | 16
155 70 —10 -1 — 70 70  — 0 70 &
65 58 0 0 —278 0 —164h v 1
176 39 +10 +1L 0+ 3y 39 - 3y 34 i4
185 28 420 412 4 86 112 4 224 44§ o
188 21 430 +3 - 63 I89  + 567 1701 A\t
300 +158 962  + 830 7082\

Swmmary: N =300; Sfu=—278+158 = — 120, W}&z 962:
Zfut= — 1846830 —816; 3 fut= 83,\}:fq 4328,

[1-08

(1G]
S
AEH
fi2d
532
REEL)
RHRA
J40
[

T14

4328

The principal information arising fvg@n‘ the statiztics is sum-

marized at the foot of the table. \~
(1) T'he mean

‘;'

_ 1
?‘!’__‘_—Z‘fa% i T M;gg
N AN

hence, since ¢=10 and 4 m}é}% org.in
E=—4 und 7= a+f=161.
'\

ur!w

~\
{ii) The vawﬁa-{%\%&} ,u;(a.)zhr- Tfiui=%8%;
hence ’; Hala) =cBuy{a) = 3203,
By LOGUE), =0 (o) B~ 3043,

the standard deviation is then given by o =17-48,
) {1\ Prmcapal third moment

L 3
a3

N ' 1
S o= Shd= 338
hence Hale) = cPpgla) = — 2720,

By 106 (15),
Py = -~ 2720~ 3(~4). 8205 +2( — 4)? = 1000,
(iv) Principal fourth moment
File)= . Sf b=,

200

hence Hyla)= Céﬂ;(“) =2360663.
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By §-06(16) it is then found that
2, = 2225625

{(v) luerage deviation from the mean. Lot n, denote the numerical
raluc—that is, independent of sign—of the deviation of #; from the
mean 50 that y,= | z,— % |; we refer to 7, as the numericol deviation.
The values of 3, and f;#, are given in colamns 9 and 10.

Let % denote the mean of the values #;; then

] z%ﬁff?}{:%z 14-43.

We refer to 3 as the average deviation.

(vi} Sumanary of resulis. The values of the mean, the prini@ai

moments and the average deviation are all characteristics of theigiven
digtribution. The values are collected here for fture refe;e{wc: ’
F=161; pe=304%; py=1000; ”\
= 222562%; p=1443. N
A\
1-09. Skewness and kurtosis P \%

{1} The skewness of a frequency (ﬁstribﬁ’gidﬁ ia a particular measure
of its departure from symmetry. ‘Iﬁ}@e?*g%immétbkaﬁ)dm&;‘jﬂmubion, the
mean and the mode are identicalplfo, py=0 and p; =0, the latter
following from symmetry. [n. a “non-symmetrical distribution we
have g, =0, by 1-06 (10}, b}},‘(ﬂs is no longer zero and can have a
Positive or negative valueg\)

One measure of ske&ksg encountered in statistical tlheory is
defined in terms of thé:quzmtit-y tg/a® which s denoted by £%, so that

'5\.: ‘5_. ) '[

O = ptajor3. (1}
x'\"’ 1 !

Also \i\‘ i :’1{3:#—%:(@’ (2}

e N\ T es T ud ()

thug @) 1s independent of the class interval. The skewuess, £, is
Péitive or negative according as ug is positive or nega_t.t-lve. .
%r tho distribution in Table 4, as summarized in 1-08 (vi), we

found: g,= o?=3042 and gy =1000; hence

fh=+0-594. )

Pearson’s definition of skewness, which Is in frequent use, is as
follows: Mean —Mode

Skewness=— — —— . #)

T

A\, ¢
2\

N
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From Table 4 the mode is 155 (the value of eorresponding {o the
maximuni frequency}; also, =161 and o= 17-16. Tlence
161 — 155

Sltewhess = — o = 4+ {344
pliewness = —--- = = {3014,
17-40

The two numerical results for the skewness, found above, are not
necessarily eomparable, sinee the two definitions of skewress are
expressed In terms of different functions of the principal quantities
agsociated with the frequeney distribution. N\

O d Mode _
..\,\ + Mean
P i ! L ¥ ! 1 r
\ \Y 125 145 165 185
O Fig. 4

In definition (4) the skowness is said to be positive or negative
according as the mean is greater or less than the mode. The sign of
the skowness thus gives an indication as to one characteristic of the
frequency distribution, namely, the relative positions of the mean
and the mode: it iz, in coneequence, more illuminatin ¢ than the defini-
tion according to the value of ﬁ% in (1), )

) The frequency polygon relating to the statistics in Tahle 4 is shown
n Fig. 4, with the mean and the mode indicated; the skewness in
this case is positive according to Pearson’s definition. |
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{il) Kurfosis. This iz a meagure of the characteristic of a frequency
distribution which involves the fourth prineipal moment; it is defined
by Ay, given by
3y fy, given by 5 =&1:L'l. )

Ty ()Y
/3, is independent, like 5y, of the class inlerval.

It is ecasily found from the values of gy and g, in 1-08(vi) that
fry=240,

As we shail see later, in §115(v), the value of 5, for a normal
distribudion is 3; in our cxample the distribution is said to have a Q)
defect of kurtosis, measured by gy —3 or —0-60. O\

{
1-10. Relative frequency Y O

We ussume, as In previous scetions, that the stalistics are cofidenscd
to give the frequency in a cluss interval ¢ go that f; is t-h%lf(bquency
vorresponding to values of the variable between x, -~ 3¢ 3nd x,+1c;
the corresponding rectangle in the histogram has a bage’e and height
Fio If i is the total frequency, then f;/N is the -rglq&}re frequency.

1-11. Continuous frequency distributions, v

We consider the statistivs of a variabley between the values x=a
and &= (> «), the total frequencyvheifeadlibkaryeohgin seen, the
class interval ¢ is sclected in practiel With due regard to the magni-
tude of &; for example, in Tahle By =25 and N=800; if the total
[roquency had been, say 10,00, we could with advantage have taken
a much smaller value of ¢, iHgdeby gaining from the histogram or the
frequency polygon a more aveurate view of the characteristios of the
distribution. In such,a-:ca-se, unless the distribution is peculiar, the
vertices of the frequabity polygon may be expected to suggest a con-
tinuous curve, the'eharacter of which becomes more definite as & is
still further infedeed and ¢ diminished. When N is very large and ¢ is
very smallgib will be assumed that the vertices of the frequency
polygon §& bn o continuous curve whose equation can, in prineciple,
be dﬁtei‘ﬁﬁned {see Chapter 7); we take the equation of the curve to be

\

N/ y=F(z), (1)

which defines a continuous frequency distribution,

In Wig. 5, 4B is the curve represented by (1} for values of «
between & and f, 04, being « and OF, being f; £ is any point, with
coordinates (z,4), on AB and @P is the gorresponding ordinate;
also, O =zx.

€D ia an infinitesimal class interval, §z, with ¢ as ifs mid-point
80 that OC = x—1dx and OD=ux+1b2.

2 sco
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If we assume that £ is a vertex of the frequeney polyeon, the
frequency for the class interval O is QP. 8% or yde or F{vide. The
total frequency, which we denote by &, is given by S— X<t de for
the range s« o= 4, or o

&= ‘ Flaydue, (2

! O

thus, 8 is the ares under the curve AR,

It is usual to replace the infinitesimal dx by the differential
50 that we write: N\
the frequency for values of # between o — ddw and a + iﬂ'é\ i () di,

or, in the form which we shall generally use, O

N/

the frequency for values of = between @ and ;y.fl—‘?ij‘t' s Fia)de,

¥
WA
o ,:;:}\ 4, ¢ QD B x
\\ Tig. 5

The r{?f@m,e freguemy for values of & between o and » + 4 is then
s
%e relative frequency for values of the variable between v and 8

&
N f¢<’}'<3<ﬂ ) is E_[ Fz) da.
~O

Ex. Ify=1+4a2, the range of values of z beiug from 2 to 5, then
S=f2(1+a.) @ =[x+ 353 = 42.

The relative frequoncy for values of the variablo betwecn  and 2 +dv
is then 24(1 4 2%} du.

The rclative frequency for values of the variable between 3 and 4 is

42-1. (1+x*)da,_4-;g»+1ys] =38,
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1-12. Moments for continunous fregquency distributions

(i) In terme of dizcrete values of a wariable z, the #-th momeni
about the line &=« is, as in 1-06 (i}, defined by

o) = 3 S o
where ¥ is the total frequency,

¥ar a continuous digteibution given by y=F(r) between the values | o/
w=2 and x=F, the r-th moment of the frequency ¥ () dw for Values

of the variable between x and z+dax about the line x=w is 2\ }
Fw)due (e — . A\ o
| 1[# A\
Hence plo)=g | oy Faaz, &
whers S is the total frequency given by ) \\;
s=[ Fen o @)
&

(ii) Mean value, #. The mean valua‘:.-ﬁi,’*is the first moment about
the origing hence, from (1}, on puthingrdbtadibra=Porg in

oy
N

~1E
= - ety dar. 3
xd#l{g}{?b‘]gx () dix (3

Frequently, the form\& Fix aucgcata that it would be adwvan-
tageous to develop a formula for 7 in terms of y,{a), where @ has a

particular relevanc&x F rom {1)

N/

N § S ree
‘If'l(f'ls,ii"‘]g {x— ) Fx) dx—SJa xF(x)dx 5], F(xr)dx

® 7

,\‘,{ a, from (3) and (2);
O
hc’i”é - =0+ (@) {4)

Ex. Flg)=lz—a); a=a, f=2a.

Then .

= f (@)t do=[ 2 —a) ]z = o,
23
pal@)= 1f * (o) Ple) do={ia(o—a) T = a.
8la

Hence, from (4), z=a+mla)=Ya
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(i) The variance and standard devivtion. We have, for the prineipal
moment of the second order,

1 "
=gy | (2—F) Fle)de
St
18 v 2
=L\J; (2o — fo—SJ ) a ) rl.'c+§J ) Flwyde;
hence, by means of (3) and (2), N
Fi=,(0) — 2", p t\t\. (5)

This formula enables us to calenlate the \-'ariam:e{;}nd then the
standard deviation. N

Arin (if) it may be more convenient to derive 9{1}1 Lerins of moments

about the line & =a. Then . \\":}\
£ N\
S;tz(a,)zf r—a) Flx)de ::\\w
@ ,“\M
# NN 8
=J. 2P () da —2{1«.[: wf(x)dr+a® | Fa)de
* ’."." w & v ¥
&N
o A P @2@%@ etrgiv;
hence, by (5), il =GP LT T u?,
from which (NN 02— pya) — (@— a). (6)

N\
It will be'cﬁ%rvcd that formulae (4) and (6) are the same as the

formula 1:0888) and 1-06(13) derived for diserete values of the
variabled\®™

x'\ﬁo'
%ﬁ\'{ Flel=(z—a)t; z= @, =2,
N \ ¥
AN S,u,z(a):f (x—a)® e =1a7;
{n\‘w 73
7 N
”> hence Hola) = Eaf,
and 2=k (% —a)t=Lu2~ (3ta—ap
or o= Bogl

(v} Principal higher moments, These are found from the general
formulae (1) and (2). For moments ahout the meau we have

[ P
#'?'Zﬁj {(x—Z) F(x) d.

o@
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If it I3 more convenient to caleulate the moments about k=g, it is
cusily =een by the procedure adopled in (i) and (i) that g, is given by
1:06 (15) and g,y by 1:06 (16),

(v} The average devigtion from the mean. We denofc the average
deviation from the mean, faken without regard to sign, by 7; then ¢ ia
given by

18 =1 Fla)d -
1=3 ] 17| Fyda )
Now, in general,
# & # \
[ gﬁ{x)dx:[ gﬁ(:r-)dx—i—f Sa) da; A\ ¢
& S & W

. N
hence {7) becomes, since T—« is positive in the range o <z <z'\and

4 —7 is positive in the range T<a < f, N
1 E _ 1 (# <
p=- (F—z) Flx)dx+ j {x—7%) Fx) d;t:\
S8), . v/
Ex. Fla)=2% a=0, fi=a. /o0

1t is readily found that §=4u® and T= . s\ -

Then # a N
Sy =f (i —x) 2tde+ | &7 zida
i :f N
_ ey -
=[}ze’ — iﬁd]gw\kfiﬂ?ﬁbﬁﬁﬂbrary_01' g.in
= 17+ fot - 30% = 37,

Hengeo W\Tf > 581Iz'a"
3

4 i‘~¢'
1-13. The normal fret}bkncy distribution
An important freguchey distribution of the deviations, &, oi." a
variable 2 from themnean, 7, is represented by the mrmal fj.tmctz-on
which we denot€inthe first instance by F{£), exprossed by the formula
~o i
N FE=Aee=4 g, (1)
in whic-h}i and % are constants and ¥ is supposed knowi. .
As I be seen in later chapters the normal function is associated
w%f; jtitimately with the theory of errors.
e froquency of the values of the deviations between £ and
&+ dE—or the frequency of the values of the variable between z and
#+dx—is given by
Ae¥Cdf or Ae ¥ dz,
The deviations, £, are assumed to take all values between —co and
+20; the total frequency, S, is then given by

8=A on e e, (2)

— oz
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It will be shown in §1-14 thai the value of the integral in {2} is
vjh; henco S=A . fmih. (3)

The relative frequency of the deviations between £ and S48 s
denoted by f(£)dE and, accordingly,

1
A8 B FE) dE;
3 N

hence, from (1) and (3), f(f)=-- 2% N ()

T ¢\
The function f(£), given by (4}, iz the normal trecu L’.11?-}_{:@11'1.0ti()1}_. and
itisimportant toremember that it is concerned w itheelttive frequency.
Tt is convenient, however, to regard the tuncligny (€] to he associ-
ated with a very large number, N, of deviationdiwe can then cxpress

the fundamental principle in the form: v/
o ) h re i
the frequency of doviations hetween £ j?}rt’l E+dE=N — o R dE,
2\ N N .
AN (3)

1'14, Integrals associated w,(th ‘the normal function

LN

(1) Proof of, fu Wb EEEy org in
[ N\

Let (w,) be the coerdinates of a point referred to axes X, 0X,
Y 0F, Algo, let. I glef@be the integral; then, since & definite integral
is independent of the' variable, we have

I" . = L * -
o\ f= ey = e ¥ oy

AN ) 0
x:\"’ LT e
and 7\Wv ]2=f f e—fw“-'-?fz)dxdy. {1
W 0 Jo

QT};BS, I denotes the double integral talen over the avea of Lhe first

) ;"\',’c'iuadrant- XOY, that is, for 0 < < oo and 0 < y<w.

\"\, " Let x=rcosf and y=raind, the range for » being 0 to co and the
range for & being O to I7; then the infinitesimal area in polar co-
ordinatos is 7drdf and (1) becomes

=B Y
= [ J e rdrdd,

JOJD

or, gince r and & are independent,

o
= }ﬂf e-r? d(_?ﬂ) — %ﬁ‘
il
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Henee, F=1 )7 or, in terms of the variable f.
2 2

s
J et di=1.m (2)
0
Also, since e s positive over the range —co <0, then
; 3 z
«© a
J. e~P b=, (3)
-0

(ily In (2) put t=:xj«; then, if J denotes the resulting integral, £\

we have .
: . = .z 1 m A ¢
J=1 e da:za -- A\
Ja 2 Al \z, N

The integrand is continuous with respect to & and & in the rg ige of
integralion; so alo are the derivatives of the integrand w’ith‘rechct

to« C mhldor . \ ~\
aJ . 2
= | xre=dx .
e Jo

obtained by differentiating the integral J und{g {:he integral sign;
the integral now obtained is m]formly coherbent in the range.

H .
Henee on, differentiating J= 3 J (E) w1t-.l;~yespecﬁ to &, we obtain
. : o S

‘ N

°°x_ p_mzé?w\ga_i:bigullbl ary.org.in
0 R 4 g

In general, if # is a pmlﬁ\*@h&eger it is readily seen by successive
applications of the pr 008&1{6‘ -above that

R L2101
ain p—a.ﬁﬂ}x = \_ﬂ: 1_3 5. S
o 1\ J 2 2n Cf:!mn"-l}
Then, putting ;@}ﬁal to 1 and A2 successively, we have the results:
\§ W 4 - '\'Ifﬂ, (2?%}! 4
et Je o WY y
‘.;’.\ [ F2n g dﬂx—-—z Dang ( )
A v o0 =
“\/ o fr 2y 1 -
anth ) a2n g =" (27) (5)

9 Jing! pEntl’
Jo

Since the integrands are positive for —m€z<0, the integrals
between the limits —oc and oo have fwice the values given on the
right-hand sides of (4) and (5).

(iii) Let K denote the mtegral f w e~ dz, Then
o

ke [t
2x o
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By the previous procedure
oK e . 1
-—rﬁ—\-zJ wlem iy = "_
éx J, :

and, generally, if # is a positive integer, we casily deduce that

b3 1
a¥ lg—an® gy o ! i ’
Ju 2 ah+l
. . C AY
We then derive, as in (ii),
N s
= & t\“x
An—1 e g 0 oo o
o e ol —=1n' N 6
]0 L=t O (6)
,\\
X ] $
and [ wintle A% o inl- "Lt (7)
Ja J‘E‘“ 3\
\S;

Since the inlegrands in {6} and (7) are Ikgd,tul\’t“ for —ocg w50, the
integrals hetween the limits — oo and KAV zero,
{(iv) Infegrals in terms of Gamma, fzbwhons The Gamma funelion

P(m) is defined by O\
[{m) = J Q¥ ot (m>1), (8)
A
W, dbraullbﬁu‘ g In
or, on writing t=2%, [(m}=2 r =l gt e {9)
Jo
~\
In particular, ﬁw\h\(é I'(1) =J.m etE=T, (10}
0
and, from (3 ~a.hcl {2),
PN . © .
AN I'ih= 2f e~ dp = \jm. (L1}
"\{ e

“)’s', ] -

th{—"’“ﬂ* 22 [ Mo
6”' ) ] et
"4

Since m >0, the integrated part vanishes at.

the lower limit, and, since
lim (t"¢~%) =0, we have

f—m 1
D) —_-;n; DI+ 1)
or Lm-+1)=mCm), {12)

If m is a positive integer, T'(m +1) = ! (1} or, by (10,
Plm4-1)=m! (13)
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or, from (9) on replacing m by m+1,
.[ a2mil o= dp = Iml,
0

which is the same formula as (6); the formula (7) then follows.
Again, gince 2m=2{m+}}— 1, we have from (3)

o
[ 2 g gt =11 (m+ 1),
W0

Now, by (123, Tim+L)=(m—-3 Tm—13) OV
Tf 4n is & positive integer then we olbtain, by successive step-;,}
RO
Tim+3=(m—-3(m—3§ ... @ E) ,\gy
_@m-1)(2m-3)...1 _#a_;r Y
2m ,‘\‘L
\\
Jm (2D
Hence L tgme_tgdﬁ""z_’azm,zbl ’ (14)

’5

which iz essentially the same fO?l&l‘ﬂdiggafﬂ}bwﬁMf@l’ﬁlkﬂ& {5) then

follows,

In Chapter 7 we shall haste occaswn to derive eertain quantitics
in terms of the Befa fum'twn\whlch is denoted by B(m, ») and defined
b\r 1 \\ im .

Blm, n)= [ 21 —z)" lde=2 f cos?-10 sin? 1640, (15)
0\ J 0
i whichm P O}a‘nd n > 0. The Beta function can be expresscd in terms
of Gamma\’cunchom as follows: from (9)
O

Ao

08 rmresf] [ emresye i
N/

if £=rcosf and y=rsmé so that didy= rdrdDd, the right-hand side
becomes

e §-ﬂ .
4 l yemean—l g—r® J cost-10 sin?*—1 0d8.

1]

Hence Bim,n)=- — —. (18)
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(v) Summary of infegrals. Tn terms of the variable ¢ we have the
following results, s heing a positive integer:

o o
f el =L, J e~ dl=n; (17)
o e
ace _ fr (2]
2 o=l = 1T (4 R Sl = 1%
;,’o FreT AT D = e
JU 71 0= gt = 1D 1) = o, NT9)

When the timils of integration are — oo and + 0 the definifeyintegeal
corresponding to (18) has twice the value given on the rightefrind zide
of (18), and the definite integral correspondin g to (19)\idzero.

The corresponding integrals involving & are ohfunkd by putiing

t=hax in the previous results: we have then: \\
o i o \ R
o Rl rf..t;=\'ﬂ, [ e_ns,,-sz;'r:}ﬂ; (20
Q 2k v~ \}. h
Bl L ¥ 4 !
int e—h!mz ot == _\".T_Z\_T{H??.?L - {_) 1 )
o D3 (2RYE |
o g, 1 !
22l o MR ., 22
JO vef‘.' 3 2}'52 }bzm ( J

The valnes M&@M‘M?&%ﬁf@l@ﬂ@}iml the limits of integration are
— o0 and o6 are obtained 48 in the case of (18) and (19).

.”‘\
1:15. Properti s'\éiu‘the normal distribution function

For convenience we denote by x (instead of £, as in §1-13) the
deviation of, thevariable from the mean so that the normal funetion
ig given by \™ b

D y=flw)=——e ", 0
Y N
3'1}(3’%é’f61a-tive frequeney for values of the deviation hefween @ and

. :w\:};:?;dx in f{x) da or ;?; e g,

) (i) The normal curve. The eurve given by (1) and shown in Fig. 6
is symmetrical about the y-axis, and it is obvious that the mean, ¥,
ig zero; also, whon z=0, then y=04 =hj\n, and when 2= + o0,
then y=0 %0 that the z-axis is an asymptote. We refer to the curve
a3 the normal curve.

The area under the eurve ig

= }}) =0
f 9dx5-rf e = |
- LY ) -

by 1-14(20). Thus, the total relative frequencyis 1, as we would expect.
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From (1), dy 233 ot
Y e xe—L i
dx Nﬂ”ﬂ
d? 2h8 ;
and d.s_zz — ,_J?? {1—2h2x?) o W,

In this Iast formula the expression on the right-hand sido vanishes
if 2= 1/(24%); hence there are points of inflexion in Fig. 6 at B and
B, whose abscissae aro + 1/{% /2}.

Y ,
N
A
A o
(\)
A=
N
« \J
,\\ ¢
!
"'x\
' 4 {\
/
. }
% \ol
Y
LV
~
N’
*“n:‘ . B
oy dbraulibyary .org.in
+5
5
X, RS o *
AW Fig. &

L >

O

{ii) Prineifa “noments. Since the normal curve is symr:a_etl:ical

about t-heiings (x=0) corresponding to the mean of the deviations

in the ralyge — oo to + 0o, the pri neipal moment of r-th orderis given by
e N

/»\j 7 h @ I .
\/ #"=;E _wx e g, (2)
From 1-14 (22) and (21) it follows that

sy =iy = =0, (3)

1
.”42 2}&2’ ( )

3
(5)

and M=



<
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(iii) Variance and stundord dewiation. By definition, #, iz the
variance ¢® and the standard deviation is o hence, hy (4)

1 | .
0'2:%3 or kz:?o'g' (&)

In statistical theory the normal funetion flx) is expressed in terms of
a so that, by (6}, 1

fe)= som " o)

N ¢
Having regard to the greater analytical simplicity of {(I§5Ih rorms
of h—as compared with the more cumbrons form of (D Hn terms
of o—we shall generally usc the normal function inJ-»}.fQ form (1) and,
when necessary, translate (1) into ( 7} by means ofthe second relation
k W

in (6). N\
{iv) Skewness. Sinec the normal curve is gytimetrical about the
y-axis, its skewncss is zero. )

Formally, the skewness as defined b{‘k\O‘J {1} is given hy

b= 3lo?
which vanishes by (3). o\ o
Pearson’s definition of skewness is (mean —muode)io; ag we have
mentioned the mean, 7, is zévo: also, since the mode is the value of 2
when y is & m¥ KA R RN CTE ) Hen ce, formally, Pearson’s
definition gives rero-gkiChness, us in the case of 23
(v) Kurtosis. ’.L‘}p}ri% defined by 4, given by 1-09 (6), namely,

N\ . .
M \ fa= o tra = ptq jot,

Hence, by {d)and (5), Ay=13; thisresult. was mentioned carlior in §1-09.
(vi} duteage deviation from the meon, The average deviation is
defined\ie’ be the mean of the values of the deviation taken without
regatdto sign. Since the normal curve i symmetrical sbout the
%a%is we need consider only the positive deviations, that is, those
between 0 and o0, Tf, ag before, we suppose that the total number

\“of deviations is A, then there wiil be 3N positive deviations and the

number of deviations between « and x4 dx will he Nf(z)dz. Hence,
if # denotes the average deviation,

1Nn— NJ tflx)de=2 —}:i [m T gy
Gl AT g
By 1-14(22}, the value of the i ntegral is 1/(2A2}; hence

1
?:E\‘E’ (8)
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or, in terms of the standard deviation,

2
-J6)

Thus 71o=0T908
(vii} The error function. In the ncxt chapters the normal function
will be met with, errors taking the place of deviations. The results
which have been derived in §1-14 and in the present section form the
basix of the subsequent investigations. An important function is the
error function, which is clogely related to the normal funetion and its
integral with somc precise upper limit. As in (vi), the frequency Qfs\
deviations from the mean between z and ¢ +da is Nf(z) de. Honcethe™
total frequency of deviations between O and £is . M
AT {
N__}f_ ge_n%ﬂ dx or \ J kge__gﬁ i, ) \
o lo A
where £=ha. ’

The error function, denoted by erf (f), is deﬁncdizy

9
erf (t)=— .Ae‘fgdi‘-‘

i
T Ja

el
N

O (10)
"Tables of this funetion are given in Append ix L.
"Thus, when A is known, the to{;&l,:{{}!@[}b&‘ﬁﬁﬁ,%?%%ﬁ?ﬁ from the
mean hetween O and an assigned yalue of £ is given by
18erf (AE).
We illugtratle the use f{ﬂé error funetion in the following scetion.

N

1-16. Example of\'a’.n’ormal distribution
We consider ie: Matistical distribution of the heights of 8505 men
of medical g :aﬂe 1,1 which proves, as a result of subsequen? caleula-
tions, to lmiepresent-ed very closely by & normal curve (F1g. 7). In
Tuble 5.hhe clags interval, ¢, is 2in. and the first column gives the
midCﬂBl,'h.éight for cach of the class intervals—that is, the abscissa
Oﬁ?}}é corresponding point on the frequency polygon; the geeond
coltfmn gives the frequencies, f. o
If & denotes height in snches we can simplify the calculations in
the usual way by writing
p=0HT7 L= +CU. ()

The next columns show the various details of the subsequent cal-
culations.

+ W. J. Martin, Medical Research Council _-1-i'e;-m.rm;.micfT no. 20 (H.M.8.0.
1949); C. ¢. Lambe, Blements of Statistics {Longmans, 1952), p. 3-
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Middle
height

5‘3

&1 r’

6 \. .
N/

67
69
7l
73
5
77

Frequency Distributions {1-i6
2500} =
2000f= -
N
t«\.
1500~ <
O
A3
A\ )
10001 LV -
*XJ
,\\)
500} . N -
‘}
’.:';
5“,‘
i (. t i 1 [
B A R X L e
C Fip T
.\
l
\\
:”f‘"'\ Table 5. Ieights of 8503 men
N/
f \" fu Sfut Jfu? fut |7 Flul
\3, -5 = 13 W — 375 1,875 | 1047 81
—4 — 120 480 — 1,920 7,680 8-47 204
158 —1 — 474 1,422 — 4,266 12,798 647 1,022
639 -2 —1.278 2,556 - 5112 10,224 4-47 2,856
L6848 1 1648 1,648 1,648 1,648 247 4071
2,439 0 —3,535 0 —13321 0 0-47 1,146
2,124 +1 2,124 2394 + 2,124 2,124 1-53 3,260
1,065 +2 +2,130 4,280 + 8,520 17,040 358 3,759
327 +3 + 981 2943 + 8,823 26,487 553 1,808
B8 4 4 264 1056 4 493 18,396 7-53 497
6 45 1+ a0 150 + 750 3,750 9-53 57
8,505 +3.529 16,714 124447 100,522 18,751
Summnary : N=8,505; Lfu=1,994; Ifut=16,714; TfuP=11,126;

Efet = 100,522,

If|y|=18,751.
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1f the actual digtribution is a true normal distribution, then the
numerical values of the principal moments and of the average devia-
tion should lead Lo the same value of 4, for each of these theoretical
guantitios depends only on h. We test the statistics in this way, using
the swmmations at the foot of Table 5 to caleulate the prineipal
moments and ihe average error. With the usual notation we have
the following,

{1} The mean 1

ﬁ:Kquzé'f‘g%:O%d—i
Hencee, from {1}, 7 =67-469,
(i) o) = c2pe{) ="T-861. A
{iii) gt = cBugle) = 10-465. ) :“:‘5
(iv) (@)= =189106. LY
(v) EI=F—a=0460; §=0220; ?:0‘103;\;‘4=0-048.
D
(vi) From 1-15(8), "
1 A\
o= pi= o7 = tiq{12) —-§:2"= 2601
Henee }1-zoj%mdbraulibrary.org.in
(vii) From 1-06 (16), N\
.:s-r1=;x4(a);*i;@s(a}+6€2#-2(a>~33*
179517
But. v 0 «.:": __3_
ut, from 1-10{:';)’,\}~ ,154—4}#-
Henco .00 h=0-254.

{¥iil) Th}r ﬂumerical values of the deviations from .t-he. mean are
deDOt;t{(I;%BT | 7] in the table. The average deviation, %, ig given by

o \¥; TH
\ 1 18,751 -
Q p=5 517 == 3 =25
1
But, from 1-15(8), KWy
N
Hence h=0-256.

(ix} The vulues of gy, Ha and 7 give values of & which are a‘-ll very
much alike, and we conclude that the statistical distribution is, to &
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high degree of approximation, a normal digtribution for which we
can take A —=0-255. This value is also scen to be in quite good aceord-
ance with the maximum ordinate of the curve (FFig. 7) for the maxi-
mum ordinate of the relative frequency distribution is /7 which is

1
Lo be cquated—1from the eurve- o LW 2500. Thus, approximately,
o

fr= 02605 valne that is liable 1o some uncertainty sinee it depends
on smoothing the frequency polygon iu the neighbourhond ol le
maximuni.

(x}) We compare the number of men with heighis hetigtn 2,
and @, with the theoretical number. From Table & themnnther of
men befween 68 and 76in. is 2124 + l()ba—i—d’T*b(u or d682 1M &
and £y are the corresponding deviations from the nwnn E{=47-1069),

then £,=0:531 and £,=8531, The thccnotmal tmee , 7, 1= lthen
given by

Nb & o,
P =i e N
" N J 2 ’ mﬁ\“
N M N
or R —— et d.é-—— [ej;i ?agz —erf{h&)].
VTS

AN

If k=0-255, then Af, =0-1354 d,Ild. hE,=2.1754. Then, from the
tables of the errgy Ay eﬂbﬁlgaw[%&ﬁm 1),

o

AR
, ni%?"foo(0-99790—0-15185]
A\
{ ”,’ = 3548,
\/
which mag,\be rtgarded as being in close agreement with the total of
3582 obtained by direct counting,

-4

O

1\1‘? Sheppard’s corrections
o\

\ In calculating the prineipal moments for a statistical distribution

\ }

as In the previous section it is to be remembered that we agsume that
all the individuals, w ith_m the clags interval, ¢, have the same value
of the ('haractenstw . The aciual dl\tl’lllutlm’l is, however, con-
tinucus and bhoppald’b correctionst enable us, in cerfain civcum-
stances, to derive the principal moments for the continnous or true
distribution,

I 4y, ptg, ... aro the principal moments as caleulated and {pe0), (arg)s v

T Derived in §8-03; seo also E. T. W

A hittaker and G. Robinson, The Celoulus
of Observations (Blackio, 1924), p- 194,
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are the corrected prineipal moments (which now refer to the con.
tinuots distribution), then it is fonnd (see §8-03) that
() = =%;  (pra}=pa— 7%
{sd=piss  {ptg)=py— 30%n + yEyc™

These formanlae embody Sheppard’s corrections.

The cireumatanees in which the application of the formulae is
justifiable are stated in §8-03. It necd only be mentioned heve that
the formulae can be legitimately applied in the case of o normal

distribution such ag thatin §1-16. A\

Censider the staiisties in the previous section. Then, with ¢= 2% fﬁ
is engily found that W

(1) =T-328 and  (j;)=164-88. AN 3
R
N 1 3
Further, wﬁ)::ﬁé and (‘1&4)=@, \
N

from which we have 2 =0-261 and & =0-260 resheetively.

Referring to §1-16(x), we find that thowamber, », of men with
hetghts betweon (;8 and 76in, is given, “1th~£1-{] 831 and £,=8-531
as before and with A=0-260, by N

n=N]erf {2:21 8&?i:§lr]ﬁﬁullﬁ’%bﬁ}}’ org.in
=1. 8800[0\99829 0-15480]

=), :)87\\

This result is in m}whmloser agreement with the counted number
{3582) than the mhiier {3598) derived from the uncorrected moments.
We oondudql%t the distribution has all the characteristios of a

normal d]thgulztlon
.\
1'1§\.: ilz‘i.‘éte on the evaluation of erf ¢
‘L@ i convenient to deal with the function ¢{f) definod by

Bty = f ‘e, 0
(1]

2 .
50 that erf (fy=-—~ $(f). 2)
A7
- . ﬂ{_]_)nt?n
Since et :%J__E.ﬁ -
sco
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btain from (1) g=3 0T
¢ obtain firc A= D
we obtain from § o (2n+Tia!
£ {0
RN TRIEFTIR

which converges for all values of ¢; this series is useful when i< 1
when it converges rapidly.
When ¢ 1, write

= o :“\
qu(r,):J g--t‘*d.t_J efdt=) Jr—gdt). AL
1] i ";}\\..:‘,
c 1 . 1, & \
Now e Hdi=——e | S e Tl AN
2t 2| A )
4
T . 1 5 LA .
=gttt taagut T
D
Proceeding in thiz way and inscrting thfa“f}mi{.-s we find that
. 11 131 O 1 T
T =——-— —1 ——
€ ¢1() 24 22t3+ o 2£,+ “"l‘i; ) P 9pn 1
s\:‘“
RS =121 e
a T al 2T !{!" 3
WW dbr'aﬁ'h'ﬂﬂﬁf‘y or gzp 7 e 1, {3)

- = o T
7 ! ) ‘ tizu-.u 2?3—{—1 1_2&1-1

Now L:{\”dz J°° ot 1 1

Henge, if 7, d‘éQOte-: the last integrated term in (3) and £, the final

term, then }'\{% 7,1 We have then the asymptotic geries
'\" _e"'t! : 11 1.31 1.3.51
{‘\\z 1:,{] = _)‘: . — :; 1_3 H E,l T iﬁ H

a.\l}tch enables us to caleulate the value of (8} with an error less than
¢the term 7',

Q " Thus ¢{t) is obtained and, finally, erf(f).



CHAPTER 2

ERRORS OF OBSERVATION AND THE
PRINCIPLE OF LEAST SQUARES

2.1, Introduction

In this chapter we deal with the statistics relating to obscrvations
or measurements of a partieular quantity, obtained by mecans of A
ngtruments designed to provide the greatest possible preeision. Tot '™,
example, the veloeity of light, ¢, has been measured by many phisi.
cists employing a varicty of cxperimental methods (see Table 11,
p. 105), For a particular experimenter the atatistical raws :material
consists of perhaps twenty independent determinatjoms of this
fundamental physical quantity; if these measures are 2duélly reliable
theu, according to principles to be discussed later, g will take the
mean, ¢;, to represent his final resutt. Ot-hqy'éXpeﬁmenters will
similarly obiain results ¢y, ¢, .... [n general $hdse results, although
all different, will be found to eluster closcly’around the mean, 2.
Now, ¢has a definite value, and so a partigiilar result, e, , bas associated
with it the creor ¢, —¢, which s um@ﬁbm%g}rg{lgfryalue of ¢
is unknown. The problem is to d.;ajzjive that value, ¢;, which best
represents the aggregate of resultg and to assign an cstimate of the
aceuracy of ¢, according to,deme criterion. The procedure to be
followed is based on the s -1@3% of the nature of errors in general and
the way (hey arvise in gny weries of observations or measurementis.
In the next four sectipns we describe the several kinds of ercorst
azsociated with obsfryrations,

R

202, Instrm{‘le\r{fal errors

To discugsthe matter in some detail we take a typical example
from Qbsc]_:{;a,t.jonal agironomy—the measurement of the right
asceatfion, «, of a star.® In this conmexion the fundamental instru-
meni\i_s‘ the ‘meridian circle’ or ‘transit instrument’, which consists
Primarily of a telegeo pe set up, ideally, with its rotational axis hori-
zontal and oriented in the east-west direction. Mounted symmetrically

Q"

+ We oxelude gross errors—for example, in reading an a,ngult?br soale with
sn ercor of 1%—_and sevious mistakes in computstion, all of which can, pre-
simahly, be detected on serutinizing the results.

¥ Night asconsion is analogous to terrestrial longitade m(sa.sured,‘ however,
westward from u particular refercnos peint. from Oh. to 24h., oguivalent to
the range (° to 360°.

3-2
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in the focal plane of the object-glass, there iv a group of seven
spider’s webs or ‘vertical wires’ asx shown in Tig. 8; lilewnliv, the
optical axis of the object-glass meets the central wire €44 inidway
between O and P. When the teleseope is rotated about its hovizontal
axis, OF will sweep out—under these ideal conditions—tle nieridian
of longitude on which the instrument is sifuated, speciiicgd wmore
particularly as the longitude of the central wire. To make nu o lscrva-
tion of a particular star, the telescope is pointed i the apyiropriate
direetion (known, with sufficient N\

. . T . O

accuracy, from the latitude of the - A
observatory and the approximate ] jﬁ‘".\
declination of the star) and then ),

clamped; for a jninute or two N
before the star’s meridian passage 7

. - TR
{or transit) and for a minute or v WO N -8 X

two after, the star is seen in the
field of view moving along some
such path as X¥ by reason of the
east-west diurnal motion of the
celestial aphere.

. + - " ——
For the observations in view, 25 r
second  instrument is requifed; Fig. 8
2. 8

this is an accunstedbrel ll@pi:ié{rg‘g- in
ideally, the sidereal tigre corresponding to the longitude of the tele-
scope, ln the old-timde bhservations the clock was situsted close to
the telescope wi&lb@.%iew of the observer so that he could nole the
beginning of aparticular minute and heur the beats of the su hiequent
seconds; in medern practice the clock is kept in a thermostatically
controlledefamber aund iz electrically connceted with a chronograph
and subSidiary apparatas on the telescope.

The observations consist in recording the clock times at: which the
imdge of the star appears to be coincident with each of the verlical
Seires. The mean, T, of the times of transit over the seven wires is

Otaken to be the instant of meridian passage. In these ideal cirenm-
\ ) stances the right ascengion, o, of the star is givent by

a=17, {1}

But no instrument is perfect, and we have to recognize that the
telescope axis is not ageurately in the east-west direction and that ib
is not aceurately level and, further, that the optical axis of the object-
glass does not pass exactly through OP in Fig. 8; these deviations

T We omit a small corroetion, which can ho accurately calenlated, dus to
‘diurnnd aherration’; also, the precise definition of & with respect to the
appropriate roforence point and reference planc need 1ot be deseribed,
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fram ideal conditions are respectively the azimuth crror, a, the level
error, b, and the collimation error, ¢. Hurther, the setting of the
gidereal clock ie not likely to be exact, for it may be a little fast or a
litele siow on the ‘correct’ time; the error, dencted algebraically by
AT, is called the clock error, so that, if 77 is the observed time of
transit, the corroet time is f'+AT.

It is shown in books on gpherieal astropomy+ that with the restrice-
tion mentioned—relating to dinrnal aberration—the equation (1) is
replaced by

a=T+AT+ad +bB 40, (2)
in which 4, B and € are known constants for the observatory cone™y,
cerned and for the particular star observed. AN

I% is thus clear that, to determine o with the greatest degrce’of
precision, the values of AT and the instrumental errors aftand ¢
must be known ag aceurately as possible, Tt is sufficient to éate that
these values are derived by means of subsidiary gb3€ryations and
exporiments and aro themselves subjoct t0 obserwitional errors—
and also Lo change, as is simply seen, for examp}e}\hi'eonnexion with
AT which is influenced by the ‘clock ratel, thisatter being itself
the subject of special investigations. o\

W

N

2:03. Personal equation e ) .

A second tr TTOT Arises w'wwtdbrqu-l!ﬁr‘f‘?'g{lgfggwtions f

A second type of error ariscs frel the psychologic hs 0
the observer. For example, when @ chronograph is used in conjunc-
tlon with a sidereal clock ta{ecord. the time of transit over a wire,
the obscrver presses a K:ai,.,ﬁomle(:t()d with the chronograph in an
clectrical cirenit, when headjudges the image of the star to be in
coineidence with o werhical wire; his peculiarity may he that he 1s
anxious not to beNlate' in pressing the key and congequently he is
apt to record I-}j&t‘)bserva.tion a little before the star is actually ‘on
the wire’. TKe)resulting error is known as the personal equation of
the obserwon, the evalugtion of which in the past has generally been
a nlii-tt-f‘;l’:'of considerable difficulty; with madern instruments and
de\;i\cef;;\ the personal equation in meridian observations has becn
gﬁa\ut}y reduced, In other kinds of observations and measuren:ge.nts
Personat equation may still be a source of embarragsment, requiring
special methods for its detection and elucidation.

The history of personal equation goes bacl to near the end of ’F-he
cightcenth century when the ‘eye and eat’ method] of observing

T Bz W. M. Smart, Spherical Astronormy, dth ed. (Cambridge University
Pross, 1956), 1. 80. ' ,

T In this method the observer, listening to the beats of tho sidereal elock
nearby, estimated to o tenth of & sacond the time of transgit of the atar across
& Wwire; hence the name of the method.
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transits was practised, In 1796 Maskelyne, fifth Astronomer Royal,
wrole:t

My assistant, Mr David Kiunebrook, who had observod transits of
atars and planets very well in agreement. with nio all the vear 170 and
for a great part of [1783], began from the Leginning of Angost last to
set them down half & second later than he should do according to my
observations; and, in January [1796] he ineroased his error to cight-
tenths of a sceond. As he had wnfortumately continued a considerablo
time in this error before [ noticed it, and did not seem Lo rae Hkolhever
to get over ik and return to the right meshod of obsorving, tiwrfore,
although with reluctance, as he was a diligont and uselul zr@%i\em nl to
me in other respects, I parted with him. e\

Tt was fully & gquarter of a century later that the e-xistﬁ:;mb of personal
equation wayg firmly established by Bessel—his agbention had been
drawn then to the Maskelyne-Kiunchrook.Seisode—and many
investigations werc undertaken for the studiwof its incidence and
peculiarities as it affected different obgorvers. The unfortunate
Kinnebrook was undoubtedly a victir ’pb a change in the personal
equation (then, of course, unknown)wfaither himself, or of Maskelvne,
or of both; it is certain that, in mo?é enlightened tinics, he would not
have suffered the injustice of dismissal.

2:04. SystetfigtidRigefuEry org.in
A third kind of errods the systematic error which may be constant
or periodic in charaeter. Two illustrations of the constant systematic
error are as follagp@ S the true zoro of 4 sextant seale hag not been
accuratoly detetlhjned by the special obscrvations made for this
purpose o that'the ‘index crror’ is somewhat erroncons, a residual
error remginswhich affects all readings by the same constant amount.
A secqn@é’x&mple relates to a skilful marksman firing at a target; if
thereligha cross-wind blowing of which he is unaware and if he is not
ir{if:ﬁ*med wherc cach shot hits the target, the mean point of the pat-
bewn of hits will be somewhat displaced from the centre of the targot,

\and thiz deviation is a constant systematic crror affecting all bis

shots under the circumstances stated.

Again, some classes of cbservations are affected by metcorological
conditions which are approximately reproduced in (;,‘v(:]e:s of a year:
the errors introduced are thus periodic in chavacter,

The observer, then, should always be on the look-out for possible
syatematic error and, if thia s confirmed, he should devise nieans

t Greenavich Observations, 3; see also E. (L. Sanford, Awmer. J. Paychol. 2,
1. 271, 403 {18849),

I Maskelyne averrod that Kinnebrook had fa

> Hen ‘into some irregolar and
ceonfused method of his vwn”,
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for its eradication. He may even be led to make a fundamental
discovery. The classical example is Bradley’s discovery of the pheno-
menon of aberration. Altempting to derive the parallax of the seeond-
magnitide star  Draconis, Bradley measured, with a fixed instru-
ment, the star’s declination at transit as opportunity permitted; he
found that his measures rovealed a periodic variation with the period
of & year, hut 90° oul of phase with the anticipated periodic variation
aszociated with parallax displacements and of a magnitude far in
excess of any possible observational error. He was led to reflect on
how such u periodicity could arise and, oventually, to oxplain the
phenomenon in terms of what we now cally ‘annual aberration®
A few years later he digcovered, by similar methody, the phenomeqo\ﬁ.
of nutation, Wy

> 4

a
< 3

PR

2:05. Accidental error "

A fourth kind of error, with which we shall be mafilyrconcerned, is
accidental error. The accuracy of an observatio swith the meridian
cirele, and, indeed, with most astronomical inst ments, is dependent
to a large oxtent on atmospherical condibions. If the ‘seeing’ is
perfect., the star moves across the ficld of wiew at a uniform rate and
the observation of the time of tra-nsit;é?’él‘ a wire would be cxpected
—aother considerations a-part——tq\@éx;hégj}lahﬁ%q%%ﬁ%q-gﬂﬁt: in prac-
tice, the conditions are not quileds depicted; owing to atmospherical
disturbances the star moveslagross the field of view at a slightly
irregular rate and along aisﬁghtly irregular contse; :tcoording]y., the
recording of the time o tﬁmsit over a wire s sibject to unc-e-rtmn.ty,
the error which exprescs this nncertainty being as likely to be positive
or negative aoc-ordi‘ng"{:o the vagaries of the atmogphere throughout
the path of the I‘z}:_"}, Such an error is said to be a.cc-id'-fmta-l an@ 1=s t}.le
result, in g(;zke-'r}l", of fortnitous and unpredict-abl.e irrcgularities in
chser vatighaland instrumental conditions, In par‘r,m:u]a;.', t-he‘ ma.gm-,
tude of the'accidental error is likely to be greater for poor “sceing
than ;Qm:’%_good. ) ]

“Adwpreviously mentioned the mean time, T, of the times 7} (i=1,2,
7}, over the individual wires is taken to bo the time of meridian
transit. Since cach 7 is susceptible of an accidental error e; which
may be positive or negative, the meal T is, on g.enera] grognd:s,
likely to be a more aceurate result than for any .ind_.wudual T; th_m: is,
of course, the reason why the observations are made over soven wircs
{or gome similar number).

herration whet the occentricity of the

¥ In scconds of are the constant of & : ,
or about 20™5, where » is the earth’s

carth’s orbit is noglected i3 v/e cosec 17
veloeity, and ¢ the veloeity of light.
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Again, in the ‘eye and ear’ method of observing transits, current
until about & contury ago, the time of transit over cach wive was
estimated to a tenth of a second; thus, if the object of Lhe obecrver
over a series of observaiions was to derive a final result in terms of
hundredths of a sceond, 4o error wp o five-hundredibs of o second in
magnitude would appear in cach estination; such errors, clearly,
could be positive or negative and are Lo be clagsed as ascidental errors.
Similar remarks are applivable to the readings of any instrument
when the final acenracy aimed at is greater than the accuragg with
which a gingle reading can he made, A

The sources of accidental crrors are many and -aricd->we have
mentioned only a few-—and the determination of, sa\\ the right
aseension of & star is subject to an unknown accidental crror e which
is made up of a large number of individua! agéidental creors—or
‘elementary errors’ as we may deseribe t-hem—;--“\?h}eh can be positive
or negative, The crror, ¢, of the final deternditvtion is alzo accidental
in character, for it depends on the unknowhsray in which the clemen-
tary errors are combined, \

P ;
NN

2-06. Summary of errors in general

(i) The effects of '.Jf??«ﬁru:narg%zf ‘errors, such ag AT , i, 0 and ¢ in
transit obsery ‘Wi&’%}}ﬁdﬁﬁéh}%’ﬁ%p@f@iﬁly removed from the ohserva-
tions by means of spegialnvestigations. Tut even when AT, o, b
and ¢ have been det@whined with the greatest possible accuracy,
residual errors and €rrors resulting later from small changes in these
quantities still Jéq}am which have, over 4 series of observations, the
general charaetoristics of aceidental errors.

(i) Theyfigssibility of the existence of personal eyuation and of
syeterugtis error must always be horne in mind, and these, it estab-
lishedeshéuld be made a special study. Again, residual crrors may be
expeebed to be of the accidental type.
w\¥in) There are, finally, the accidental errors (including those

:\’a}.ready nmentioned) which acise in a fortuitous wav. Their prosence
N w

\™In the obscrvations must be recognized, althou gh their cffects cannot

be directly or specifically aliowed for, as in the case of instrumental
Errors,

2:07. Combination of observations

We continue to take ag an illustration the determination of the
right ascension, e, of & star; we assume that, from a series of obheerva-
tions made by one or more obscrvers, the values oy (i=1,2,...,n)
are obtained. It is also assumed that each obgervation has been
corrected as far as possible for all errors other than aceidental errors;
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thus, associated with o, is an accidental error ¢; of which the magni-
tude and zign arc unknown.

The problem confronting us in brief, is (i) to combine the # results
&, according to some aceeptable precept so as to determine the value
of & which best represents the aggregate of observations, and (i1} to
azsoss the procision of this value according to & specifie criterion,

Oceasionally we are concerned only with (i) when the valuc of
the guantity to be determined is aceurately lmown; one gimplo
example is the experimental determination of the value of r from the
ratio of the neasure of the circumference of a circle to the measure
of itss dismeter; another cxample is the experimental determination™y,
of the value of ¢ when, this value being known, the object is tobgss ™
the capabilities of a new instrument or perhaps to assess the experi-
merntal skill of a class of students using the apparatus fam iliar i the
laboratory such as the simple pendulum or Attwood’s machine,

In the following pages our principal study is the thedry of errors
—the general problem defived by (1) and (i) abovecstreated in the
remainder of thiz chapler by elementary methodgand later according
to the eoncepts of probability. 1t must be empha stzed that the theory
of crrors, unless otherwise stated explicidly, is concerned  with
accidental errors only. N )

2:08. Observational equations ¥l entbakuaws org in

Let x denote the trus value of the quantity to be determined, and
wy(2==1,2,...,n) the obsermt{or meagured values. For simplicity it
may he supposed in 1hig @ai}ter ihat the » observations have been
carefully made by the ;X..me observer working in comparable con-
ditions throughouisybhé observations may then be deemed to be
equally reliable G\t statistical language, of equal weight.

If e, is the g{rbrot ¥, then

% o/ Xy—E=E
This is.ﬁ'i‘; aceurate equation in which, however, only one element,
Wy, 18 Aelually known.
\Thé cquation ay—a=0
is regarded symbolically as the general ohserpationdl eq-uat-ign, corre-
sponding to the observed valie x;; as guch it implies the exlste-nf:e of
an error e, .

2-09. The postulate of the arithmetic mean
From the previous section the exact equation assoclated with each
of # observations is of the form
N 1)
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There are # such equations centaining (n+ 1) unknowns, namely,
x and the n errors e;; consequently, we are unable to derive Lhe frue
value, &, from these equations. To derive sme value of = we must
have another cquation, and to derive an aceeptable value of x this
cquation should he equivalent to a reasonable hypothests relating to
the accidental crrors ;.

Any aibilrary function of the errors can be wrilten as

(;5(61: Egy wersy En,):o; L 2)

accordingly, if a particular form of ¢ is assumed, the » ecpudisds (1)
and the cquation {2) can be solved to produce o definiterwilué of .
But it must: be noted that the value of « obtained in th ifwhy depends
on the hypothesis jutroduced, represented by (2), afd 3 not teces-
sarily the true valne of the unknown, \\

A simple arbitrary relation of the form 2)3880

i AT
Zeizel—}—cz—l—...-{—,é,l.ﬁo. (3}
i=1 C'x\
The solution of the » equations (J}':aiﬁd the eqnation (3) is casily
achieved, Add the # cquations (Lfp¥ient
www.d %%HHE}@%Z&F? ® by (3),
1

LS

or r==Zz,. 4
O n=" {)
r it -
We denote by the arithmetic mesn of the n measures x;, 8 simpler

nemeneclature, t}'}&m the usnal 7. Then (4) becomes
N\

y \ w4 =,
'l'h))ﬁg\fhe trie value of the unkuown is the arithmetic mecan
proqgiz?? ' thal the arbitrary relation (3) 4s in Jact o true relation,
) ”\As regards the ‘reasonableness’ of the hypothesis embodied in (3}
#\iwis to be remarked that of the accidental errors €ps -evs €, SOME TG
' positive and some are negative; this is the naturo of accidental errors.
If n=10, say, it would hardly be expected that Te; wonld be exactly

zero; on the other hand, it would be expected that EEEE- would be
n
very much smaller than the average error, taken without regard to

. . 1 .
sign and given by ” 2|, '3 accordingly, the arithmetic mean would

1 As in Chapter 1 the limits of munmation will be omittod for siraplicity
when no confusion is likely to be caused,
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be rogarded ordinarily as a good approzimation to the value of the
unknown,

In many classes of ohservations in which it 7¢ believed that acci-
dental errors alone are present, the arithmetic mean is generally
found to give « satisfactory and consistent value of the unknown
quantity x; thus, if several series of ohservations arc undertalken by
akilledl ohservers, each series consisting of a namber of individual
phservations, the arithmetic means for the several series are found to
differ vory little amongst themselves.

Tnstead of introducing a hypothosis such as (3) we take as a hasic
postulate Lhat the best value of the unknown is the arithmetie megn;
this is known as the postulate of the arithmebic mean. ~A

As we shall sce in Chapter 3 the postulate of the arithmetic mean is
fundamental in Gauss’s investigation of the normal la.y\«z ‘of. errors

based on the prineiples of probability. ¢

2-10, Residuals AN
The dilTercnce hetween an ohserved valug J;{{-ﬁd any assigned value,
£, of z iz called a residual, described more, GQH‘?enim‘ﬂ}" in the present
connexion as a £ residual. Thus, correspending to x; we have the
£ residual denoted by V; and definedihy”
{:;\-:'q';\:l.u .braulibrary,org,in {1
I £ ig taken to be the ari fhohetic mean, @, of the % observed quan-
lities @y, &4, ..., &, the réaidual for z, is denoted by #; and defined by
2 H PR

\ 'Ufsx‘-—-a.. (2)

The residual v Ngt d(iuivalcnt- to the doeviation from the arithmetic
mean as used/irg 1-06.

When 46 erm * residual’ is used in this chapter without further
SPE-GiﬁQELﬁ%, the sense in which it is described is by means of (2},
that j&Wwith reference to the arithmetic mean.

O
M. The principle of least squares

As before, @ denotes the arithmetic mean of the measures ;
{i=1,2, ..., n) of & quantity whose true value, @, is unknown; then

1 ()

fl =—=— ;-
n

Tet £ be an undetermined value of the unknown and V; the £
residual for x;; then Vo —£
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Let 8(€) denote 3, an essentially positive guantity whatever
the value of £ may be. Then

S(Ey=Ew?— 2£20c, 4+ ni?

=X Znaf +ng? {2)
by means of {1).
Similarly, if §{z) denotes Lo?, where 2, i the residual @, —a, then
on putling o for £ in (2] we have

N
S{n)=Tak —nao’. a3
¢(\A
Froni (2) and (3), S(E)— Sy =n{E ~a)?; \} )

hence, sinee the right-hand side is positive, S{u) < h{f) o}
ST O
Thus, we have the principle of least bgg{oﬁvs which states that the
sum of the squares of the residuals \\mh‘ espect to the arithmetie
mean is the least possible. P \%
Convergely, if we adopi, as the (ntm‘wn for the best value of &, that
value which wmakes the sum u‘f dhe squares of the COr‘lC::pOlld]HG‘

residnals a mn&ww b?@&!ibﬁ%%«?}"dﬂgﬁﬁﬂnd the value of £ sueh that
8(£) is a minimum. Now, 3

O
. \\ a8
from which M % —2Zf(x,— &) ()
w7 ot
y N \ ; 22 o
and ::\' 7 - ;=2n. (%)
A& &E

.'[T'(.a,@minimum, &8{0E =0 and $28/6£2 = 0; (5) shows that the sccond
R \c‘qlidition is satisfied; by means of {4) the first condition iz
or Eg;=nf;

accordingly, the value of £ which makes S(£) a migimum is the
arithmetic mean. Thus, the principle of least squares leads to the
result that the vaine of the unknown, consistent with this principle,
is the arithmetic mcan.

The postulate of the arithmetic mean and the principle of least
syuarcs are seen to be complementary, for onoe involves the othet.
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Note. Tun arithmetical work it is advisable to have one or more
checks on the computations. Now, since »;=x;—a, then

Yo, =Zp—na=0. (8)
One check it afforded by (8), which states that the algebraical sum

of the residuals 15 vero,

2:12, Standard ervor

From 2-04{1), w—w=e, (i=1,2,.., ),
or =L — 6. as.
"'\
Algo, if ¢ i the error of the arithmetic mean, @, theng —z=eor W
N
X=a—¢. Ko, NIV
A\
Take the sum of the # equations (1}; then \V
nx = T, — Dty =l — XE;, ,t\\;
from which, by (2], ne=¢;+ e+ ... +€M~':;\ (3)
non N\ "‘:’ .
30 that ptet=Xed4 Y X aat (FF) (4)
1’5=1\aﬂ'r§r_$y:_'tlbl'aulibr‘al'y_or‘g_in
noon "::; L. ;
Set E E g’.‘ﬁ‘j—_-gl (j'_":?f), {5}
i=1 .’."i K
Then \'\{n@eﬁ =xei+T. (6}
Tet 4% denole the mehmof the » quantities &} so that
7N \ l: g3 2 (?)
O npd=2e;.
N e ]
§"\Q¢ IJ’.]: T 8
Then (6) bee R (8)
1611 ([1).’2@711105 = +ﬂ_z

The iﬁ;.ﬁo'rtant- positive guantity. £, defined by (7) is m.mlogous to
Ko ¥tandard deviation defined in §1-06iii}. in the literature it
iz gcnerally described as the rool-menn-square. error-—a cumbrous
expression, In the following pages g will be described as the stundurd
error (S.E.). . )

The equation () is an exact equation which gives thc error, €, of
the arithmetic moan in terms of the errors of the individual obscrva‘.-
tions. Tt is evident from the quadratic form of (8) _tha_ut e can be pozi-
tive or negative, so that the true value of @ in (2) 3= glven by

w=at || (9)

N

)
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The incidence of the double sign. will he discussed more tully in
§2:14.
Congider now the double summation, 7', given by (3], nanely,

T=

[NE

I =

266 (FF4).

i F=L

The errors ¢, and ¢;, being accidental crrors, may be positive or
negative; consequently, T may he expected 1o be, nmmerically, JNiC h
less than Yef, the first term ou the right-hand side of (6).

Let @, be the value of e when T is neglected in (6); then (3¢ heeomes
fo=plin, or K

'\
1 \ .
=+ 1. % 14)
Pa= ~\ (10)
in which g, as defined, is a positive quantity., &

As we shall scc more particularly in §2-14 the double 5 enin (1)
reflects our ignorance az to which side of, bhe arithmetic mean the
true valuc lies. AN

Since 7' has been negleeted, 4, wo u,}d})i'ﬂir.mrily be regarded as an
approximate value of the crror of thé\a¥ithmetic mean and, in a well-
eonducted scries of observations, the degree of approximation would
be expected to become closer with increa sing values of n. In the ideal
case when nis a very large nimber the formuia (10} is to be regarded
ag giving the tWe‘fﬂ%f@Wl Y 78 Rerms of .

The numerical valud\of g, that is, | 4, | =piyn, is the standard
error of the arithm et;'-e': wean and, us we shall sce lter, it represents one
index of precision in use, of the arithmetic mean.

It is 10 be ngted that in the present discussion the standard error,
#, defined Ry({7}, is a lheoretical quantity, since it is a fanction of the
indi\-'idua{frrors, €;, of observation which are themselves unknown.
[n themoxt section it will be shown how It ean be evaluated, usually
with \éonsiderable accuracy, from the observed valnes, »,, of the
uphwcwn; then the standard error, [ 44, 1, of the arithmetic mean can

»be Tound at once by means of (10},

" &

S

" Asin (9) the solution for  is wrilten with the double sign as
e=at|p,| (s.1),
in which {8.%.) is added to indicate that our discusgion is in terms of
standard etror.
In the interests of simplicity of notation it will be sufficicnt to wwrite
the previous equation as
xzai#’rz (S'E-): (1])

in which . is fo be interpreted as the standard error of the arithwmetic
meon, namely, | g, | or gin.
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[v]

2-13. The formula =1

With the previous notation we have

X, —T=g,
E—i=1y,
fL—r=¢,

where ¢ is the error of the arithmetic mean.
From {1} and (2), ¢ —z=¢;—;; hence, by (3),

V=6 — 6y
from which Zul= Te2—203e, 4 net= et — net
by means of 2:12{7) and 2-12 (3}. Then, by 2:12(8),
T
Tet=(n—1) p?— —

Thiz is an exact equation. o

47

As before, it may be expected that T/n will b’é}m‘a]] compared with
the firat term on the right-hand side of (), fanishing in the ideal case

g

wheu # is very large. Neglecting 7' in, (&) wc shen have the formula

N
-

%,dbra ulibrary.org.in

1,2.:‘—\ -
PR

(9

In the notation mtroduced{k}y Causs, Tof is written as [ve], signi-
fying the sum of the pro etrofv . and v, thal is, in thiz case, the sum

of the squares of the 1’psid Nals. We then write (H) as
P < . [l
 § $ # =
{ 1\ i w— 1

{6)

' M .
and 2:12 (LONPecomes, with g, now denoting the standard error of

the arithmatic mean as in 212 (11),
:..\v.

a\" _L’(‘__ [_]—Ii]_]
\ ) ""E'“:\.f'n_./s/ln(ﬂ-—lﬂ

r .

These are important formulae. )
Because of their importance we SUIMMAriZc

principles dizeussed in the previous pages.

{7)

the main resnlts and

(i) The standard error, g, is & positive theoretical quantity given,

in terms of the unknown errors of chservation, by

2

1
#‘Z:-?;Eez- .
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Tf, for a serice of obaervations, there is reason to believe that the
observational errors are small, then u will be small and the qualita-
tive inference follows thut thoe greater the degree of accuracy of a
sevios of observations the smaller iz the walue of g; thus the standard
error, g, 15 an index of precision relating to the magnitndes and
diziribution of the unknown errors.

(i1} The standard error, g,, of the arithmetic mean is similarly an
index of precision; its theorctical walue, that is, in terms of the
unknown errors, is given by p O

‘a— \:.—n . 5 \? \
NS °

(iii) In any serics of observations the arithmetie Brean and the
residuals #; can be cvaluated by ordinary procosiesy consequently,
the computed values of y and g, can be obtailwrl'from the formutae
(6} and (7) above.

{iv) The derivation of (8} as an erach €ormaula dcpondb on the
vanishing of 7'/ on the right-hand Qldp\}? (4). When n is large, Tin
may be m(pccted to be negligible com}m‘l‘ed with {zw], in which event
(6} and (7) can be regarded in prd,otlce as suficiently exact furmulae
for determining the fhecreticd gquantities g and g,. If, however, # is
small, say, =7, the doubles @ummation ean hardly bo (ﬁ(pectpd to
v amah in gencral and so (Ghand {7) must be regardcd ag approximate

formulae only Tt ‘ﬂ?ﬁ% YHEY 8 case, the value of 2, given by
A/{ = ]1} is not angiet value of this im portant theovetical quantity,

¢ \J
although, in & s%@g.s of eareful ohservations it ig, as a rule, sufficiently
precise for ally practical purposes. Similar remarks apply to g,
given hyydlor.

(v) I’Q&ﬁ(ﬁ}, [re]=Xet=(n—1) 2 < nu?,
or\y D912 (7), Tuf < Zed, (8)

Khus on the whole, the residuals arc less, numerically, than the

\ true errors,
\¥

(vi) Asin 2-12(11}, the solution is written as

=0+ . &)

2:14. IHustrative example

We consider as a simple example the measurement, on an ordnance
map, of the distance between two points A and B on « curved road.
We can suppose that the map distance betwoeen A and B is found by
laying a thread as accurately as possible along the curved lne and
translating the length of thread concerned into 111118:3 by means of the
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map scale. Further, we shall suppose that the operation has been
perforined # {imes by one or more persons, resulting in the values
dyydy, -, i, (in miles) for the curvilinear road distance.

The distribintion of the various values of d (to Lwo places of decimals)
in Table 6 has been talen in a special way, fiest, to malke the caleula-
tions as simple as possible so as to focus attention on methods of
procedure and the princples involved; secondly, the distribation has
been taken in accordance with the gencral experience that small
BITOTS arc more numerous than lurge errors; thirdly, the statistics

are intended to illustrate tho relevance of the double sign in the
A\

formula =t fig. O
) e
The equation associated with the measure d; is P
N
Lﬁf——d:e’f (i=1, 2, ..., 1), ,~.\:. (1}

where d iz the true value of tho distance and ¢, is the aatidental error
of measurement converted into miles. [n the table, a3 13
I

Tahbie 6 \ g
3 () w e OF (7 (s
Gt s 6L
—_— — . ‘:" bt .
- " + - G‘W\;k{}_él brat-}_ library.org Lls% L‘,
5 25418 g OB 36
s N 16 4% —4 16
3 N9 16 48 —4 16
1,\i 1 14 4 -2 4
\ 1 14 14 -2 4
1 O 1 12 12 W) i}
10" 1 12 12 I 0
0 1 12 12 0 0
OF 9 10 30 12
] 9 10 30 +2 4
i 25 § 40 +4 16
5 25 5 40 +4 16
7 49 6 42 +6 26
113 165 156 218 214 0 152

Sumnary : n=13; Swy=0; Ze=1d d=165; IU;=156;

Te, U,=4; Swy=0; Inj=[w]=152

In numerical work It is always advisable to reduce & basic equation,
such as (1), to ag simple & form as possible by 01'1tt-ing out unnecessary
numerical componcnts and by avoiding decimals. In the present
example il is easily seen from the first eolumn of the table that, owing
to the intentional symmetry of the values of d;, the arithmetic
mean, a, is given by w=2-44. (2}

RGO
4

N
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Tt is then advantageous to write
thy=ct 4= 2 dd 0, (3)

in which ¢ =0:01 mile, and, consciuently, the values of x, are positive
or negative integers; these values arve shown in the seeonied eolumn,
In a real problem in which sy mmetry iz unlikely to be a feature of the
distribution we should choose, instead of ¢, a1 convenient. valie, Ay
in the neighbourhood of the estimated mean. N

Let x be the true value eorvesporiding 1o the true distance, %o that

£

_ ne .Y
deaex=214+cr. \\ ? {4)
L 3 Q\",
Let ¢; denote Lthe error of 2; so that &N
€= 0 — \:m$<~ {5}
then, from (1}, (3) and (1), e, =CE;) N\

the errors of d, are thus related siuiply ih\fhe errors of ;.

The problem of dealing with thqﬁ}sfkmces d; 1z now transformed
into the problem of dealing with the¥iumbers ., .

If ¢ denotes the error of @, 1. tién

&N
NVe=n—d. (6)
www_dbrauli}g‘ﬁary_or‘g_in

Also, from the secondwolumn of the tahle

3

E
A T=—vr. =" T
\\ o= L, 0; (7}

hence, if. e @utiotes the error of i, then
o E=F—a= —gz. (8)
§"\\.
) ’i\‘)”illustrate general principles o will now be assumed thet the true
value, o, of the distance is 2-43 wmiles. Then, from {43,

~

NN
Q~ w=—1;
from {3) and (8), g=x;+1 and e=41;
alwo, from (2) and (6), 6= 4 1-00.

The values of €; are shown in the third column and their squares
in the fourth.

(i) In this subsection we proceed to caleulate the double summnia-
tion, T, given by

ki n
T=3eXe (j30).
i=1 j=1
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Let §=2¢,=13 (9)
and Ui=5—¢,=13—¢,. (101
Then T=Zefs—e)=ZeT;.

The values of U; and ¢,T7; are in columns (5) and (8); we then find that
T=218--214¢=4, Thus, T iz small comparcd with the value, 165, of
Yef, in aceordance with the ex pectation cxpressed n §2-12.

{i1) The residuals v, =, —F=1; (since =0} and their squares are
given in the last Lwo columns of the table, 1% will be observed that
Tt < Xe?, in avcordance with the formula 213 {5).

{iti} It is of uimost importance to apply checks for the various stepé_)
i the computations; the methods of doing so depend on the partiglar
ways i which the caleulations are carried out. Despite the simpl ity
of the numerical work in Table 6 we consider two checlka. “: 3

2

First, by means of (10) and (9), '»‘.\"
U, =ny—Ze,=169—-13=158,
a8 shown at the bottom of the fifth column. S’c,c'-&hdl ¥, by 2-11(0),
T =0; the summary shows that this result isafrified.
(iv) We now test the accuracy of the formula2-13 (6), denoting the
value of 4, caleulated according to this foxrniula, by s,; then

) O Y
pi== _[?.%\qgﬁ%lhraulibrary .org.in
=28 12

From which 2357,
The true value, 18 gitfen\{;;;? nut=Zetor by 1342 =163, from which
\ f=3-56,

Thus, the values &f ﬂc and g arc practically ident-igal. The aimost
exach sccorda |1cg\i5:,> ‘of conrse, the result of the aIt-jﬁo_lal character of
the data in Lh&"ﬁrsf, column of Table 6; in a real series of careful
mea.:-surcmetis“it would, howover, be expocted that the value of g,
woukd llcxtf;gﬁﬁer significantly from the true Va_.-lUG= e ]

(v) Fhevalue of a» caleulated from the residnals, follows from the
Tonthiiy, — Jhoixin; henee

Ho= 3‘57}:':\:(13 ={)-987.
As previously stated the error, ¢, of the arfthmetic mean of the 7,
that is, of & which is zero, by (7), 18
e=+1.
Thus, the values of tte and € are practically identical, shovt»ing that,
numerically, the value of Ha represents the true error of & with a very
high degrec of accuracy.
4-2
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The unit in which g, g, ¢ and g, are pxpressed = 0001 hirnee, in
miles, and 1o three places of decimals,

=2, = = 04030,
eferror of ) = L 0-010, a0, —0010,
From (6), d=—wu—e,
and, sinee ¢ = g = 0-010, we have the identity

d=u—ypu,, A\ (11}
where d (=2-43) ix the assamed trae distanees and 72— 24
{vi) Consider now the same mensired values, o, En.\'l}rlﬁc 6 bui
assurne now that the trwe value of the distunce, denofed L, (s 2043,
The arithmetic mean, @, is 241 as before, and, B33(3), the values
of z; in column (2) are unaltered. The crror of a,'f\m W denntred by ¢,
s giveu by 2\
s ¥ t=a—d, = — 00100 (12)
By (4), the truec value, 2, is now + 1, exugsl,, trom (3), the error g, is
iven by &
gl ¥ (-',“. =z, < ]i\ S
Thus the errors, &, are —7, —6,.. . \athich are the ereors in column {3
with their signs changed but red@ing upwards from the bottom of the
column. 1t ﬂmﬁggﬁlﬁfﬁa;gﬁgpélm1 ged in value and that the value
of & is unaltered. Furtheytsince the residuals are independent of any
knowledge as to the true value of the unknown, being dependent
primarily ou the arifimetic mean, the coluris {7) and (8) remain
unchanged; }1011(:9;\“@11& caleulated value of g, iv the same ax bhefore,

namely, A
o O\ Ha=0-010,
so that, sif¢e’e, = —0-010, then
xt\n'
:"\s. |ﬂ'ﬂ‘-=_el'

NQW\I;} (12}, d, =2 —e, and we now have the identity

NS dy=a4p,. (13)

o \¥;

\‘;

{vii) If we now suppose that the true value of the digtance is cifher
243 or 245, the formulae (11) and (18) combine to give the true
distanee as

) d=at i, (14)
in which #, has been identified, to the degrec of accuracy indicated
in our problem, with the true crror {numerical) of the arithmetic
mean.

The double sign in (14) racrely reflects our ignorance as to which
of the two values, 243 and 2-45, represents the unique value of the
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unknown, Further, the value of #,, being calenlated from the
resicluals, i independent of any knowledge as to the fruc value of the
unknowin.

(viii} Inn the general problem involving messures X;, when of
course the true value, X, is not know, the best value to bo attributed
to the unknown is, aceording to the principle of least squares, the
arithmetic mean, ¢, of the measures. The precision, g,, of the arith-
metic mean is calenlated from the formula

NATE ‘
#“_Jl?z(n—]” ! \:\

and the solution is then written as o W
X=atp, BR) 7o\

n which g, wnay be only an approzimate valtue of the erfrm"‘()umemcal)
of the arichmetic mean.
N
2-15. Ohservations in which a constant s‘?(sYematu: error is
present AWV
We denote by b a constant systematle Prror which enters into all

the measures ., of a true quantity x; shig arithmetic moan is 2,
Tete, denote the aceidenial crrornuf thihneakiinesy. 6hghn

.'z:‘--—xn——e%--!—k (%7—1: 2,...,n)
AN
from which, by summ&t-iir&‘w'
Ty na= nia —z)=Ze;+nk. (1)
Let ¢ denote the I’Q\ul'rant error of the arithmetic mean, which. will
be partly accideftal and partly systematic; then
N\NW
\”’: a--r=E¢.

Henee (13 beeomes ne = x¢; +nk;
on_squiaring we have

) 2

nied = (Se,)? + ikt -+ 2nk2e;

=32+ T +n2k? 4 2nks, (2)
n " . .
where T=3 &6 (jFih
g1 =1
and s=126;.

Now, as we have seen earlicr, 7' may be expected to be small since
the &Cc}dentdl crrors, €;, may be positive or negative, and the same
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remark applics cqually to s. Tf g, i3 the value of & when 77 and s are
neglected and if z s the standard error associated with the accidental
errors and given by nu?=2e?, then (2) beeomes

g M E e .
= —+ k2 {3)
Ha "

Binee each w; contains the constant error k, it follows that the
arithmetic mean will also contain {his constant creor: henee the
residuals v; depend only on the secidental errors. Thus, the siandard
error, f, of the aceidental errots is given by the formula N

: 4 \'
'\
T
sl
n—1 g W

. a < & - .
whether a constant syslematic error is present or nab Hence, from (3),

*{
(” - 1)

However diligently we increase the nfu?nl'}el of ohservations, there-
by tending {0 reduce the effect of thf‘\xm identad errors, the value of
#% will never be less than &2, O

To obtain a reliable value m° the 1111L110 wh when o systematic error
is suspeeted to be present, igisNecessary, first, to muake a subsidiary
reries of obnwmw‘rﬂdvmtdrhﬁpﬁx%ma designed to evaluaie the con-
slant error & and, segont®, to remove k from each of the measured
quantities x;.

i"’\
2:16. The stalNﬁrd error of a linear function of two independent
variables

(Jonkldcr‘the function ¢ given by
~G d=axtby, (H

w] \e « and ¥ are independent variables, and o and b are constants.
,‘iupposp that A makes a serics of n ohservations of the quantity &

oNund B makes a similar series of % ohservations of y, u particular
" observation z, being agsociated with y,. The corresponding value of

, namely, ¢,, is given ¥
¢ -Poing Y @ =ax;+by,.

If ¢ is the mean valuc of the » values @;, then
G=a¥ +bF.

Lei £, and #, be the accidental errors in x; and g, and ¢, the corre-
sponding crror in ¢,. Then

6;=af;+by,,
from which Tef =atRE + b2y 4 ab il {2)
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At thiz point we introduce the important stipulation that the
errors wade by 4 are entirely independent of the errors made by B;
in other words, we assume that, for a given £;, the corresponding 7,
can be positive or negative and that the magnitude of 4, is independent
of the magnitude of £;. It follows that T, will consist of positive
and negative quantities and, in the ideal cage when » is large, that the
summation may be expected to be small or nogligible compared with
ZEY or Tyl

Lot gy, s, and g, denote the standard errors of ¢, x and y; then

apl=2e], nui=12E} and nuy= p7L S

N
Thern, neglecting the final term in (2), wo have \ \)
=t b R

"This result can obviously bo generalized for a linear iflxnot-fon of
any uumber of independent variables; in particular, ifs g=<er+by+ez
th , : ’
o ‘g%:az‘ai—‘,— bzﬂ-i'i' Czﬂ,j. O

We ghall ineet again the snbject-matter Qf'\f}iia gection when, In
$4-14, we bage our arguments on the principles of probability.

Corollary. If ¢ denotes the mean of z and, then

—1 ! _.2:" 'S )
Fo 2)\‘:mj?ébﬂlaufibl'ar‘y_m'g_in

2-17. Hypothesis of elemegte{éy errors

It will be assumed thatAhe errors affecting the measurement of a
patrticular characterist c'\‘a’.ré accidental errors only. In practice,
generally, there iz sowe undefined limit to the magnitude of sugh
crrors; thus, in mce’l-’bﬁl‘fing the length of a curved line, as in §2-14, it
could be confl .h’t-ly anticipated that no reazonabl Y exp(_}rt m_easurer
would or couldd] e w0 carcless as to make an error of half a mile, say,
in any ony \{fl his moagures; in other words, the frequency of such an
error i negligible. Further, wo should expect the frequency.' of small
erToLEtn 'he greater than the frequeney of lg-rger BLTOTS. if a ]:dW of
arfapsexists, it must take cognizance of what is a matter of experience,

# consideri ng the problem of deriving a law of GrTors haged on the
simple concepts of this chapter, it 18 necessary to mtrofluce an ad ?zx;:c
assumption or hypothesis which is reasonab}e.m the hg?rht- qf‘ expg;-n-
ence. The hypothesis adopted in the present connexion 13 that a
particular crror in an obmervation Is made up of a large' number of
small hut diserete elementfary errors, all of the same m.ag‘mtude, some
positive and some negative. In the ease of detelmmu'lg‘t-hc:-e F‘lgh‘r.
ascension of a star, for example, there is a large number of 1.ndn-_"1du:al
accidental errors arising from all sorts of sources and contributing in
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different ways to produce the final but unknown crror associated with
the observed valuc of the right: ascension: the hypothesis thus states
that this final error is a particuler combinalion of positive and negalive
clemeutary errors.

The hypothesis was introduced originaliy by Ha gortin 1837 as the
basis on which the normal law of crrors, as it s cadlod, wis derived,

2-18. The norntal law of errors

We denote the magnitude of an elementary error by ¢ and wedatume
that all accidental errors of ohservation are derivable fromymw elemen.
tary errors by taking various combinations of signs. ', apaificular
aceidental error, £, of obrervation consisis of o cortain hwmber, m, of
negative elementary errors and the number, 5 — i, af'piositive elemen-
tary errors; then o

£ =m{—&)+ (r—um) e:(?e.-—Zwé}é:' (1}

The number of ways in which £ can be }t&?ﬂlmed, denoted by K(E),
Is the number of ways of selecting m ¢leafentary errars out of the
total n; accordingly, ﬂ'ix\ -

Fig}) =

= £ 2
!l —m)! @
In the circumstances slated, J{‘ifg')“is the frequency of the eeror £,
Sin}i l.arly, NI p (] ;b',?éci};(gﬁg—.i gm+2)e will be produced by
combining (e—1} ncgative elementary crrors with (n—m 1)
positive elementary &rors; hence
- n!

priog—_ .t
‘\\F(&,Jr*"}_(m—_l)l(n—m+1)1‘ (3)

FE+26) i

From (2) puidA(3), FE e

from wb;’}h
N D20 R w2kl (g @
Q) FE+26 7@ a4l = i1

~ I}i{y means of (1),

h

\/ 1f the number of elementary errors is very large and F(£) is assumed

to be a continuous function then, to Ole),
F(E+26)=F(E+e+6)=F(L+e) +ef (£ +€)
and FE)=FEte—c)=F(E+e) —eF'(E+e),
Then, (4) becomes, to Ofe),
FEte)  fie

Figve) ~ (n¥lye’
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or, if @ denoles the error 46,

Flo) 2

Flx) (n4+1je

It is now assumed that the number of clementary errors and their
magnitudes are sueh that (n+1)e?=1/24% where 2 I8 a constant.

Then .
) g P = =i
from which, on integration, N\
Flzy=4 e, {r'"l:\’
where 4 iz 2 constant of integration, . O )
The frequeney of ervors hetween  and @+ di 1s then N

Fizydr=A e dx, ‘ m'\: ' (6}
and if all errors botween —p and +p are pessible thén the total
frequency of errors, S{p), is given by .=t’\\;

sir=d e 0" ™

-2 « \/

If gencrous limits are allowed 1o the mugimum errors &, the total
frequency S(p) differs Little from:"fl‘\"é“i%%?Iﬂbkeﬁﬁéﬁb?rgqmvhe“ the
limils i (7) are taken to be —ooand -+ oo, for, asin §2-17, we regard
the f_[‘equenc}r of very ]_a[‘g[‘,. el"_Bi)]“S to he extrem B]_}-‘ gmall. Th eTl, with
sufficient aceuracy, , g\ -
3 f a"}"%’z dix.
—

From 1-14 (20}, ’(.-,he\’\:éj{le of the integral is Ja/k; hence
\\ 3 S=Anih. (8)
The relat KQ},; quency of errors between and x+dx is denoted by
fz) da; then, by (6) and (8), f(z) = F(x)/8, so that

N\

QP e e 0
\,I'?T

The function flx}, given by (9), is the normal function, or Faussian
Junction, associated with the law of errors. _
The normal law of errors may then be stated in the form: the
relative frequency of errors between & and @+ d is
b e 10
dr=— e~h¢ da. (10}

flz)dx o

8
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The constant, A, appearing in the normal funetion is called the
modulus of precision.

IT the number, &, of observations is large, the frequency of crrors
between # and & 4 de is 3

N Tophtet gy (11}
\-' i

2:19. The modulus of precision

From 2-18(10) it is at once deduced 1hat the rolat ive frequengssof
all errors within the range — @ to +x 18 N
hofe 2% N
£ a Hh @ . o o
- [ e M day or -r—J e ldy, O (1)
AT —a AT to N\
-
Write £==ha; the limits for £ are 0 and Az in the sé@and form of (1).
. . | N
The relative frequeney, defined by (1), is then N

2 Joux s
— s—1% ?
\.-"'?Tf et ¢ \\.

0 £ £

In §1-15 (10} we introduced the error ﬁ;?ict-a'on, erft, defined by

g\
erf (I} =3 =Pt
woa T Lo
ww w.dbraulibraigytorgiin
it may be remarked that its\hame arose in the present connexion,
Hence, the relative flsqucnc-y of all errors in the range —a to z is

y \ » Neorf (ha). (2)

Also, the number of errors between 0 and o i TN orf (ha).

Consider t\x\oSPrles of observations of the same quantity, with A
and A, as t%';c moduli of procision, and suppose that k> A,. Then, for
any pregeréfied range —xto 4 % for the errors, the relative frequencies
are erflhe) and erf (2,z). Now, the integrand ¢~ in (2) or (3) is
positive and henee, since A= i, erf(he) =erf(h x), that is, the
xelative frequency in the first case () is greater than the relative
\;fréqucncy in the sceond case (%,). tu other words, the crrors are
distributed more closely about = 01in the first case than in the second
cage, This implies that the series of observations in the first case is
more accurate than the series of observations in the second case.
Thus, we have the general principle that the more accurale a series
of observations is, the greater is the value of ; henee, # is an index,
or modulug, of precision associated with & series of observations.

The two graphs of the wormal funetion are shown in Fig. 9, in
which 04 =A/f,/m and OA,=hy/\{7. Since we are dealing with relative
frequency, the arca under cach curve is unity.
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Tt is Lo be noted that the function relating to the normal law of
errors is the same as that for the normal distribution function dis-
eussed in §81-13, 1-15 and illustrated in Fig. 6.

X o .
1 x'\\’
Fig. & '\‘

S

2:20, Test of the normal law of errors -

The .t.hcorctic.al derivation of W‘ﬁ'{?ﬁﬁofa &fﬁgr@r@cs with lt. E}.l’l
obligation to submit the law to thedest oflered by a seifud bl obscrva-
{ions which have boen made with the greatest care and from which it
is assumed that the effects GE strumental, porsonal and systematic
crrors have heen remo 'e{‘;wﬁl this category are, for example, a long
scries of astronomichl observations and the measures ‘of .p.hyswal
eonstants made in ghedaboratory. A condition for the reliability of a
test of the normg?! 5% is that tho obscrvations or measures should be
NUMCrous. D o

We congiderthe results of 470 obscrvationst by Bradley of the right
ascensiony of Sirius and Alinir, expressed in soconds of arc. As the
numhet,6f obscrvations is very considerable the residuals from the
atlﬁthlﬁetic mean for each star may be regarded as ‘L‘-he: CITOTS .oi the
indiAidual observations, The aceuracy of mstruments in the time of

Bradley was very much inferior to that in modern days and, aceord-

ingly, comparatively large errors wold be expected in the observa-
tatistios to be considered afford

tions; perhaps, for this reason, the &
a thorough test of the normal Jaw.

Tn the last column of Table 7 are
of errors, taken without regard to sig

to be found the ohserved nunber
1, between 070 and 0°-1, 01
T W. Chauvenst, Spherical aned Practical Astronommy, 5th ed, 2 {Philadelphia,
1891, p. 489,
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and (+"-2, and 50 om ; these numbers, denoted Brr Ay fe), will e conipared
with the theoretical numbers devived on the assumptlion that the
errors follow the normal law to which particular value of the
modulus of precision is assi gned; this valuet was found 14 he given by

1 17

T {1)

B 18087

Table 7. Test of the normal Law O
ES Jue arf (ha) il o) Afr) :it_\(;t'}
01 018057 (12015 LA NS Ty
0 036174 26105 1538 e ™ 6y
] 0-54261 055712 2615 5, N
04 072348 0-B037H 2640 %ty 38
0”3 O-80435 070005 3TH6 LA 05 31
0”6 1-08522 0-87515 LRSS 857 el
o7 1-26609 - 32663 430 22 26
68 1-41696 {05928 43 153 i
0”9 1-62783 0-07R66 i) 02 i
10 1-8057 008447 N\ U651 51 7
=170 — — Y - 49 8
N Y

1f N is the total number 0f'é‘l;.isbr\-_ations—--in this case, ¥ =470—

the frequencyy wiv d R HREAI OR8N — & and -+ Is given, from

219 (2 N
9 ( }a by A\ n(;{r) =N erf{fmr)‘

Tf = 0”1 then kg,
&

O b=
¢
henee .Fro,rp(‘oﬁe table of the error function {Appendix 1) we have

O
Q»' 2{0% 1} =¥ erf (0-18087) = 0-20180 ¥ = 94.0_
A

| [

"1
ih

!

=0-18087; (2)

—

]t,py to be noticed that ka in (2) is a number. Similarly, if z=0"-2,
~Sthen hz=0-36174 and
) 2

n(0"-2)= N erf (0-86174) = 183 5,

The other values of #{x) are found in the same way.
Let A(x) denote the number of errors between #—0"1 and 2; thus

Afx) :n(x}—n(x—O”-I}_
T What is called tho probable error, r, was found by Bessel to be given by

#=0"2657; in chaptor £ wa shall see that r and & are connectod by the formula
r=0-4769(1f1), from which (1) is devived, '
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The values of A{z) are found in the fifth column; these values give the
theoreticad nambers of errors between 070 and 071, botween 01
and 0"-2, and so on. As previousty mentioned the last column contains
the efeersed numbers, Ay(x), in these ranges.

The agreentent hetween the implications of the normal law and
the observational errors as shown in the last two cofamns is remark-
ably close on the whole; for errors up to 170 the only noteworthy
divergence is for 2=0"-4. It is to be noted, however, that the number
of ohserved errors exceeding 170 numerically is somewhat greater
than the theoretical number; this is in fairly general accordance with

N

most investigalions of a similar nature, suggosting that the law¢ (}K

errors tends slightly to under-estimate the proportion of large epgqrm’

In §8401 we ahall hawve oceasion to refer to this point again. ™

N

x% s
&v

O
O

N

R

W

 §

A\




CHAPTER 3
PROBABILITY AND TH1} NORMAL LAW

3-:01. Probability

In this section and ihe next we consider the basic concepbg of
probability by ineans of which the normal law will he derived.

In tossing a coin there are two possibilities us to which sigle Wil fall
uppermost, ‘heads” or “tails’, and, on the assumption Wmh (he coin
is perfectly symmetrical, there is no presumptive 1;@:3.%?111 why the
coin should fall ‘heads’ rather than “tails’. If one shuldbeon template
tossing the coin, say, a hundred times, the « 11’{1‘&}-&"5 expectalion I8
that it will fall “heads’ fifty times and tails’ fifbytimes; here “reason’
is independent of the necessity for performipsbhic operation of tosing
the coin a hundred times. The La.-plfi-(.‘--l'g;}}.§éﬁR'iif-ﬂ?.t of probability is
based on these concepts and is stat:cc}ﬁxh the form: il an event (for
example, the fall of ‘heads’) is expedted Lo oceur m times in » trials,
the probability, ¢, of the event geeairring is defined {0 be given by
p=min; the probability, g, of::tllé cvonl. nof occurring is given by
q=(n—m) i S an4 gﬁblvar:y org.in

Tho probability of a_com faling ‘heads’ is then 1;2, and the
probability of its falling\ bails” is also 172,

In the ease of a cubieal die the probability of throwing a particular
side, say “two’, 1:,\{‘\6 sines the tolal number of possibilitics is 6 {the
number of faceg af the cube),

An alterndiiye definition of probability is based on experiment.
Suppose thaPa large number, N, of trials are made, ag in tossing a coin
or throwing » cubical die, and that a particular evens, such as falling
‘heads™er falling “two’, occurs PN times, then the probability of the
event is said to be p. The frequency of the event is pN, In the past

aeweral exlensive trials of tossin g a coinhave been made. For example,
\MBuffon, tossed a coin 4040 times and it fells *heads® 2048 times. The
probability of falling ‘heads® according to the empirical definition 18,

in this cage, 20484040 ov 0-507, which is close to the @ prior estimate
in the Laplacian definition that the probability should be exactly 0-5.

It is to be noted that if an eventiscerfuin to oecur, the corresponding
probability, p, iz 1.

3+02. Compound probability

We first consider a simple example. Supposc X throws a coin and
Y, simultaneously or immediately after, throws a die, What is the
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probabilily that X throws ‘heads’ {event 4) and ¥ throws *two’
{event /}! The events 4 and B are independent and we regard the
oeenrrence of the two events together as a compound event €.
Generalizing, suppose that the probability of the oceurrence of
ovent A is p, (=m,/n,) and that the probability of the occurrence of
ovent B, independent of A, is p, (=my/ny); it is assumed, as in the
Laplacian definition, that the m’s and w’s are integers, In (nym,)
trials the number of times the cvent A is expected to oceur, is g, (1, %,)
or (s 1.}, and of these the number of times the event I s expeeted
to oceur is py(m, n,) or (m,m,). Thus, in (n, ny) trials the events 4 and

B occur together, that is, the compound event ¢ oceurs, (my mgd™

times, Hence, the probability, p, of the oecurrence of the compouhd ™
event ' is m, mipfn, Ny; 80 that L™

P=py Py
This result can evidently be generalized when p.jndépendent
everts are concerned, The probability, P, that thegelevents ccour

together is given by Pepy g PN\
=fhPaer P &4

R4
3+03. Gauss’s derivation of the normaklaw of errors

Ganss started with the postulate of $he' arithmetic mean, stated
now iu terms of probability as follomgsy,

wig dpraulibrary.ergin, .- .
The arithmetic mean of they imdependen yO%s%’IL{J"‘t"m?s_ &
{i=1,2, ..., n) of a quantity g~made under comparable condifions

and deemed to be cqualiy & Mworthy—is the most probable value
of the unknown, x. ¢\

The error of the observation =, s ¢;, given by

.\".“’ T — =€,

where » is the t@c’ value of the unknown.

1f ¢ represents the accuracy of measurement ;
Cmplo}’t‘d,'\'}\f%‘.‘ probability of an error occurring between ¢;— 3¢ and
¢+ 3o will e proportional to e and will also bg a fanetion of ¢;, or _of
x“m?"\t}‘l;s= the probahility concerned is written as cf{xii ). By
thé priticiple of compound probabilily (§3-02), the probability that
all'hc independent errors oceur is

P=orflay—2)f(g—1) @) 1

vahie of the unknown that value
dP/dx=0 and

of the instrument

We take as the most probable _
which makes P a maximum; the conditions arc (i}
{1} d2P{dx? < 0.

By logarithmic differentiation of (I)

s ( %;_:7'?) -0,

, the first condition is

Q!
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. . o - )
or, if Flo, —ay=" " O 2
Jir—a] @
then ZHr —xy =0, (3)

Introduce now the postulate of the arithmetic mean, «: then the
value of w in (3} is to be identified with @ so thai, il ¢ ;= the residual
{r;—a), (3) becomes

V=Fob+ Fled+ o5 Fle)—0. o
Now, Zug=na or Zfr,—a)=0 o Ip,_=0); o
N
the last formula can be written as \}
Bo=— {0 gt by ) “'\‘ {5)

K7,
: L g \
g0 that, in (4), T becomes s function of #— | ;{}ﬁ\ﬁ%!mient 'x, namely,
- T . \
Bpy Vgs oons By g, Henee 8V e, =0, that iz, \N\Y

- IR ?}:‘ a1
or, by (3), gy TF )

At ov
NSy n
. www . dbraulibrary.org.in . )
This last eguation is evmﬁ;nlﬂly rae for any pair of v’y and, con-

sequently, each differaiitial coefficient must be equal to a constant,
say, k. v d0110t-es<1-ﬁy residual, then

AN (R
N\ &
P
from W}xu‘{ih’; Myy=kv+ K,
Hencb) V =kSp, +nk.
D

Bab V=0 and Zv,=0; hence K=0,
;“\;’“ Now, from (2), .
O ey =",
/ Jw)
and we now have fﬂ =kn,
fiw)
from which Jw)=C tir?
where €' is a constant of integration, The last result gives the form
of the function f and so, returning to (1), we have '

P= (CC)H e%f:}_‘wi—m]z_
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If the second condition for & maximum is to be fulfilled, that is,
d2Pde® < 0, then it i easily seen that & must be negative. Put
k= —2i% then

flr— )= e, (6)

In terme of the error, €, or € in short, the function f(g) is given by
fley=Ce (7}

We shiall sce later that €' =A/,/m; then f{e) is the function associated
with the normal law of errors, N
A
NS ©
3:04. The postulate of the arithmetic mean ~\ N
In the preceding section the postulate that the aa‘ithmej:iﬁ\nea-n is
the most probable value of the unknown leads to theforih of the
functinif. The converse follows, namely, that if the fapawof the func-
tion f for diserete observations is given by 3:03 (6}, Ythen the most
probabie value of the unknown is the a.rit-hmeﬁie{hg}m. From 3-03 (1)
and 3-U3 (6), _ O
P (GOJR 6-—?922[0:?;—.1:)2; D
Kow, P is & maximum if SEE(;UZ--—,;{:&:{'S a minimum, that is, if
() 68/2e=0 and (i) 829/2x2 > 0. CHEERELIRRRON BRI, — ) =0,
and the sccond condition is satisficd since ¢29/d22=2n. The first
condition is equivalent to \
e §x€ =R,

\ .
or, stated otherwise, t-he}USt probable value of the unknown is the
arithmetic mean,
Az in §2:11, the :ﬁost-ulat-c of the arithmetic mean and the normal
law are com plethentary, for one involves the other.

N

3:05. Gesttinuous probability

£%M0 e remarked that the form of the function f in 3-03(7) has
beetMerived in connexion with a finite number of diserete observa-
tions and, further, that the constant of integration, C, is =0 far un-
determined, the only property of ¢ which we can assert at present
being that O is positive for, since f is positive, we cannot have
‘negative probability’,

If the number of observations is very great we can pass .t-o the con-
ception of continnous probabilily by defining the .pro}oa-blht-y that fn
error lies between ¢ and e4de as f(¢) de, where [ is given by 3-03 (.r.).
Now, the probability of making alf errors in the range — o <e<x1s

5C0
3
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unity, which is simply another way of asserting that il is cerfuin that
the errors He within the above range. Henee

oo

J_Tf('f}flenl

or CJ e *efdg=1
—a
From 1-14 (20}, the value of the integral is \/77/A; hence C'=h{mand
ey =y A
N O

The normal law of errors is then stated in the form: 11141' 1&1 ge number

of ohservations the probability that an error l1css between e and

e4de iz ; ’ ,'\‘

,—ées',—"‘et‘2 te. ’ (2)
NI \\ >

Wo sometimes refer to the law as the U dedian law of ervors.

By means of the empirical deﬁmtum of probability (§3-01) we can
pass to the probability of the freguency of errors within the range £ to
¢+de. Thus, if the numbm, NS Crf observations is very large, the
probable freqllcncry Br oI :gq ff?ta? SR © and €+de, which we denote
by n{e) de, is g1ven %

Jdile )a’.e-_N,— e~h%* dg. (3)
N AT

Y

3-06. Herschel’\herivation of the normal law

Sir John, Her@chel considered the nature of the errors in dropping
shot from & heght on to a horizontal board with a particular point, O,
1ndrmted§~q that to be aimed at.

In\hjg 10 et X,0X, Y,0Y be any arbitrary system of rectangular
axch I the plane of the boald Let {z,¥) be the coordinates of the

; omt P, of impact on the board of a particular shot; then x is the
\.grror paralicl to OX and y is the crror parallel to O,

We now make the assumptions (i} that, inasmuch as the axes are
arbitrary, the law of errors will be expressed in terms of the same
function, f, for y as for z, and (i) that the law of errors for z is in-
dependent of whatcver valucs the error y may have, and vice versa.

The probability that an error paralle! to 0x hea hetween ar and
T +4dz iz written as feyde, (1)

and, from (i}, the probability that an error parallel to QY lies between
y and y+-dy is
yand iy f@)dy. @)
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Thez formula (1) expresses the probability that the falls of shot lie
within the shaded vertical strip of width du, and (2) expresses the
] ity that the falls of shot lie within the shaded horizontal
gtrip of widch dy.

The wssumption (i) and the principle of compound probability
{§3-02}) enuble us to state that the probability that a shot will have
errovs between x and x+dx and between g and y+dy is

Flx) fly) dxdy. ~

This is the probahility that a shot will hit the small rectangle dady at
P, H z s any small area at P the probability that a shot will hit th:ks* N

N
3 @) fla). A M8)

area is then

1 \\!W“a?:a Eaulib{{ar‘y_or g.in
g /

(5 Fig. 10
.\\w
Consider now axestOX’, O, the former passing through 7. The
polar coordinates O{P “with respect to the original axes are {r,f) and
the reetangulag,. ‘sordinstes of £ with respect to 0.X7, 0Y' are {r,0};
drcordmgh i:n; 3), the probability that a shot will hit the small

e M:&w af(r) f(0). (4)
The two gxpressions (3) and (4) are equal; hence
N
N P f) =1) FO)- )
The right-hand side of this equation is independent of 8; hence
[y} f +flz) f : (6)

Now, x=7cosf and y=rsind; also
o) @05 _ s and T _aprigy:
R &b

3-2
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e 'y
#flx) yfly)

Binee x and y are independent, cach side of this lust equatinn must
be equal to a constant, say, & We have al onee, on integration,

flay=Cer, fly)=Cets, (7)

the congtant of integration, €, in cach ease Leing the same, in wocord-
ance with assumption (i). A

In (7) we replace k& by —47, in accordance with the priveine that
the probability of making a large error is less than that glanaking &
small error; accordingly, we write A\

f=Cee, f=cert AT @)

N

hence (6) becomes

Now, a shot must fall at some point on 1:-}13131;{111@ and the =nm, S,
of all the probuabilities, given by {4}, for f'a,llé"g\:f shot wherever these
may be on the plane amounts to ‘certaiity’, so that £=1; hence,

from (4, N
W Zaf(r) SRR
where the summation is taken ovér$he whole extent of the plane, If

o 1s the polar area rdrdf, we thenthave

wiww.d brj;u,lj Sraity) it lindrdd = | {9
A

But, from (5) and (&1,
¢\ . 0,2, .0 4oa
G S0y = e wmenni— omgner,
hencc (9) b@bbmes

\% @ T o
,\“’\ 27?(,-T2j g-h"r"frrtrznc [ e—idze=1,

§ 4 0 }E-z J o
:"\s. )
where z=4%?; the z integral is 1; hence C2=A%7, and the function
& f(:c) is given by B
o floy= e, (10)
mJ Nr

N This is the nermal or Gaussian function derived in §3-05.

The assumptions by which (10) has been derived must not be lost
sight of. As regards the first, namely, that the law of errors for one
direction in the plane is the same as that for the perpendicular direc-
tion, 1t would scem that this is entirely reasonable for, under the
conditions of the experiment, one set of axes is not likely to he more
fundamental than any other, The sceond assumption, ﬁamely, that
the errors x are independent of the crrors v, has been eriticized in
some guarters as unwarrantable; the preceding prool would, of course,
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have 0 be abandoned if it were found, for example, that large errors
@ were invariably accompanied by small crrors 4. But, in the problem
as stated, it is elearly necessary Lo introduce one or more assumptions
if & scivtion is to be achicved. The final justification of the normal
law is to be found in the results of experience, namely, that a series
of numerous and trustworthy observations is generally in conformity
with th= pormal law as established.

3-07. The law of errors for a linear function \
We conuider a linear function, ¢, of two variables X and ¥ given by )
2 A\
S=pgX+bY, o\
where ¢ and b are congtants, Ao
Let o and v denote the errors in X and ¥ respectively,; tht-bc BITOTS

ined to be independent and to obey the normal lew with A
and & as the respective moduli of precision. The puplapility that an

hON
error in X lies between a and x4 dx is then -x\v{,%}cr"%zdx, and the

k
profmbility that an errorin ¥ les between yand y+dyis — P—R""y"‘dy

Let 2 be the probability that the crfors betw cel X and :r—i—d'r: and
between i and y4dy oceur cong;mr&ﬂyalﬁ}%gpa}iy fhe, principle of

»

compound probability (§3:02), &

}“te (Ja2m2+3‘2 ‘dedg; (1)
¢\
\\
Let » be the error i ¢ corresponding to errors # in X and y in ¥';
then '.'\ w=ax-+by. (2)

%

For an {E.,B'Si,l}f?&fiti,\”;lllle of u, the errors x and ¥ can take any values
eonsistent, with (2) '
Defingfati error v by the linear expression
"\ ) v =by — ax. (3)
Thed, Trom (2) and (3),

dxdygd_(x,?f) dudy Z_Z dudy {4)

t Any linoar expression for v in terms of = and y, othor than {2), would be
suitable, bt less simple than {3}
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3 THRY-
and h2e? 4+ k% 2=( 9—2) uz—i.—az(-v—!—t'u-) , {(5)
" @ o ki
17k k2 h? 1.:!9')
e 2. 5 _ iy i
wherc e ( ?)3) /i 4 (a- 7, (6)

Denote the coefficient of «® in (5) by H? then it is casilv found
from (6) that

1w b A -
R N
SO\
Then (1) becomes, by (4) and ({5), A~ N
! hi : Tag 2 A
L o

This expression for P is the probability thabserrors Letween u and
#+dw and between » and v+dy oceur: \@,enc(- the pwbd lity, @,
that errors betwecn the assigned valw& - and @ —du ocoar for all
possible values of v is given by

PR A O fui 2
Q— s ab —H‘““duvl ’;ﬁxpl: 22 (?, -—;] :Io.’b'.

L3

Since u has dn‘@é“‘iﬁkﬂ'&‘@%&ﬁ HEBAue of the integral is (7jx, by
1-14(20), Further, \
o\

?bfu hk i
\/.\'xab ,\ 2,{, +52h2) =H, by (7}

Henee, the, pmbablhtv that ¢ has errors between # and u4-du is
x'\ 4
H
\j\, ) e HRE gy (8}

AT

\,, e thus have the i important result that the law of errors for the
~\\linear fanction ¢=aX +5¥ of two variables, subjeet to errors with
’ moduli of precision % and k, % the normal law with modulus of
recision, H, piven b ]
p g ¥ 1 et g
BEete

Clearly, this result can be generalized for a linear function of any
number of variables. Thus, if

p=a, X +a; X+ +a,X,, (9)

where X, . X,, ... are independent variables whose errors follow the
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normak law with moduli 4, A, ..., then the errors, x, of ¢ follow the
normal iaw given by (8), the modulus of precision, H, being given by
1 af af aZ

T L S} 10
7R AN TR Y] 1)

3:08. The law of errors for a linear function (alternative proof)

As In the previous section we consider the linear funetion

N

¢=aX+b¥,
the errors 2 and g in the variables X and ¥ follow the normal law “1@:\
moduli A and . e N
« \/
7 N

R N

L

e

S \
.
\Q M S
O Tig. 11

</
From 807 (U{t‘ﬁe probability, P, that independent errors between
% and x4-da@nd between y and y+dy occur is given by

O hk

x "\ P e e_hzxg_kzgsdfrdy.
Ay "
Tet) ™~ ha=E ky=m
then p=§g-{§2+u=}d§d¢ (1)

The error, u, in ¢ corresponding to the errors  and ¥ is given by

u=ar+by, or hy a. B @)
b .
Similarly, u+du=%(§+d§)+%(ﬂ+d"?)- 3)
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We regard (2) and (3) as the equations of the two purallel straight
lines, LM and RS, inthe £, ¢ plane (Fig., 11 Take 47 and OV to be
new axcs, U7 being perpendicular to L. ‘Phen, front {2). ot applying
the formula for the length of the perpendicular from the arigin toaline,

.
Od=— - Jfu,
ud B "
- _.!\. -
(k2 f’.zz)
g N\
I a2 B2
, e W A 4
where gt e RO 4
N\
Similarly, OB=H{u +du); ulso, AB= I du. \ >~
Let €' be a point on L} with the coordinates (£ Pyt (£, F) with
respect Lo the two aystems of axes. Then O

Us04=Hu, dU=ABoH du:
Eryi=T24 7 aIIQ::‘dia; =il d¥,

Hence, from (1), P:-l DR g T
T

N/

Thus, geometrically, P i-i-svﬁ}.i(“:‘“prohability that a point lies in the
rectangle d7dV, show _e’s}imj{cd at O where A =0 and £F=CE.
Consequelltl‘j‘,\"”ﬁkl%b lﬁll‘loba%a['l%\o,r%)[f] that a point has coordinates
between U7 and & 24N —that is, between Hu and Hiu --du)—what-
ever the valuc of I 'may be, is the probability that the point lies in
the infinite stﬁg\bctweeu LM and BS. Thus

N\ W

/ 1 oo
<& Q:-—e--“d::-'f e )
w

L >
W N — 0

T%“tjzﬁue of the integral is A7 Then, sinee 7 =1fu,
O

\ g .
AN Q=— ey,
NS e
a\” )
\/ Thus the normal law is reproduced for a linear function, the

modulus H being given by (4), The generalization, reprosented h¥
3:09(9) and (10}, follows.



CHAPTER 4
MEASURES OF PRECISION

4:01. Introduction

In this chapter we consider the problom of deriving, for practical
purposes, formulae which enable us (i) to obtain the best or most
probable value of an unknown quantity from a number, 7, of obsgr-*\
vations, «,, of equal reliability, and (ii) to assess the precision of ﬂ1i§"~
valzc. A regards (i) the value concerned is, according to the prineiple
of least squares in §2-11 and to Gauss’s postulate in £3-04, the
arithmetic mean, @, which is readily caleulated from gherformula
a=Yir,in. As Togards (i) the formulae which are summéized later in
§4-11 are, in fact, a set of standardized rules derived\On the assump-
tion that the observational errors are accidemdly either in con-
formity with Bagen’s hypothesis (§2-17) qr,gabject to the play of
probability as in Chapter 3. In seeking a S,ettof rules, two considera-
tions are important. o\ '

Firaf, the theoretical basis of the {uieé “must be reasonable and, in
particular, the postulate or rulewiiidbrassepimtyah ghe arithmelic
mean is the best or most probable’ value of the unknown must be
jastified in the light of experie}lcc. Now, the basis of the rules to he
derived is the normal law#geveloped in the two previous chapters
parfly out of « prio?‘i\é@ﬁsider‘ations—-—whic-h, in an ide&_l set. of
observations, appeargte be not withcut significance. The justification
of the rule eoncexping the arithmetic mean is that in several series of
observations m dé with the greatest care and with efficient apparatus
the arithmetie foeans for the jndividual serics are found to be sub-
stantially \imistent; this is true notably in mapy classes of asiro-
nomical sbservations, Farther, when a large number of ohservations
of an-ymknown quantity are analysed, it is found that the errors,
thE¥e eing identified with the residuals, follow remarkably closoly
thivérror law, as illustrated in §2-20. At the worst, the normal law,
when shed of its theoretical origins, may be regarded as a standard
with whieh the best observations, if sufficiently numerous, are
generally found to conform. . )

Beeondly, the rules should be simple and easy of numerical apphca-
tion; ag we shall sec, the normal law has eonspicuous merits in this
connexion, Further, the rules should be accepted in all quarters as
the standard rules.

Therulesare primarily

based on the assumption thattheohservations
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are sufficiently mumerous and, in this case, when the crrors follow
the normal law, the rules are explicit and worthy of confidence. RBut,
when the number of observations is small, say 6 or 7, the assessment
of Lthe preeision of the arithmetic mean according to the rules can he
regarded only as approximate; in such a case the results which we
obtain are the hest that ean be achieved under the circwinstances.
In §4-16 the problem of assessing this degree of approximation will
be diseussed.
“N\

4:02. The normal law O\

We denote an error of observation by &, Aceording to 21§ {113, the
expression of the normal law is as follows, If the nmmber, V, of
observations is large the frequency of errots betu-egsﬁ cand e+de is
Nfle) de, where ; "

(3 o w \J
flep=—e"%" {1
A\

W

it this frequency is denoted by nfe) e, th‘m
nle)de :’A"}{é) de, (2)

Also, the relative frequency of Brrors between ¢ and de is f{e) de.
According t&'PHaPRERY QIERNINEl Taw, derived from the coneepta
of probability, takes thefgllowing form: the probability of an error
between ¢ and e+ de isfie) de. The empirical definition of probability
(§3-01) enables 11*\'t:§~13assa to frequency so that, if ¥ is large, the
probable frequencyy n(e)de, of errors between ¢ and e+de s also
given by (2). \J
In (1), A ig"the modulus of precision and, in a series of observations
whose errfps follow the normal law, the more accurate the ohserva-
tions t&%{hﬁ‘g&r is . But 2, being a theoretical quantity depending on
the d@bsdrvational errors which we do not know, iz ill-adapted as a
pidetical measure of preeision, and in the next sections we seck other
o kans of ascertaining the precision of a series of ohservations in terms
\\ Jof the observed quantities themselves.

4-03. The formula pg= for a continuous distribution

1
h 2

When the crrors follow the normal law and form s continuous
distribution, the frequency #{e) de of errors between ¢ and e4de is
given by 4-02(2), namely,

n{e} de = Nf{e) de,
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i which & is supposed to be a large number. Since the square of
cach of these errors can be taken to be €2, then

Np?=Zn(e)de. e, (1)
where the summation Is taken for all values of e between —ooand + oo,
Then {1) is written as

Nut=N f et fle) de,

or, by means of 4$02(1),

.ﬂ»g=i  emege, O\
V) e .
By 1-14(21), with m=1, the value of the integral is /7 /(2k®); him'\
1 A W
. — 73 2
A o L @
or, sinee x and b are positive guantities, O v
1
PTRE D X

[tisto be remarked that g, like A, 152 t}:gaoir:etica.] gquantity associated
with the normal law. g
4-04. The formula .= h+/2 Eor U B8 Vit Bns

{'onsider # discrete indepondent observations @, g, ...» &, of
equal reliability, of a t-rq@'q:ha- tity a; further, suppose that cis a small
quantity rolated to thewdegreo of accuracy attainable by the mea-
suring instrument edpgeerned. Then, by the application of the normal
law in terms of grgbability, the probability that the error ¢, of the

QO . ch 2.3 .
measure x, gs betweon €;— lo and e;+4c is T e—"¢l where b is the
)Y v .
modulus%f Precision at present unknown. The assumption of cqual
re]jabi}i:ty implies that A is the same for all the observationa_s. Hence,
the“probability, P, that all the errors oceur is given, according to the
\]S\I'iﬂéiple of compound probability in §3-02, by
P=Chn %76
where O'={e/\fn}", or by P= Ofn g AT (1)
where g is the standard error defined by nu=2Xe7.

With the observations actually made, the errors e, althongh
unknown, are defined implicitly, and so ek, or pu* in ‘(1}, may be
regarded as ropresenting a specific property of the series of obser-
vations.
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The most probable value of 4 is such that P is a maximu 1, or that
log P is & maximum. The first condition for a maximum ix

d d
—_— F = _{; rh—nhingly = }
i {log P}_d}*(n bog b —nhiut) =0,
1
whence = =57 (2)
1
or ‘sz_) I\ {3)
=
f2 nooL '\t\
Ao, ap (08 )= == 2met

accordingly, since the expression on the right is n@;r"a{ﬁﬁ, thesecond
condition for a maximum is eatisfied, A 4 %
The formulae (2) and (3) are the same W&those derived in the
previous section for a eontinnous dist_t'ibut{}u.
2, N\

4:05, The formula for w in terms ’of'[\she. squares of the residuals

Let »; denote the residual for an obstrvation o Land g the arithmetic
mean of n observations, x,, Thet™
SN
www.dbraulibkarty drg.in
= — ey — " (g a4 oo i)

2\
{',\n —1 Ly @y ,

or = — =BT (1)
A\ ® noon 7

Thuse isa ]_ineé}r;ofunction ofthe independent quantitics .z, , @y, ..., 2.

Assuming Phdt’ the observations are equally reliable, let 4 be the
modulus G precision associated with each #; 80 that the standard
error_\e&}é given, as in §4-04, by

o\ 1 .

QN 2ht°
\"

«~

\\ A"].so, let /I be the modulus of precision of Lhe residual »;; then, by

application of 3-07 (10), we obtain from {1}

?

1 (1—1)2 1 1) 1 n—11 (3)

FTER it nhE T B

This is clearly true for any residual, that is to say, the modulus I
is the same for all residuals,
If 47 is the mean of the squares of the reziduals, then

npt =T (4)
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Also, sinee JTis the modulus associated with the +'s then, by applying
(2} wrnd by means of (3), we have

, 1 m—11
M3~ % o
: . _ Y
from which, by (4) and (2}, wr= T

o the (laussian notation, the last equation is

[wt] .
’u'zzn—l' .r{’{.).\..
NS
[#t] A Dd
or p= /\/?%_—'i . .“.( N (6}

The formula (5) is that derived in §2-13 from dgm}?ntary coll-
slaerations,

The value of the ar Lthm etic mean, 4, is easilyaléunlated {rom the
MIERSUTEE Xy, g, +no , and from it the residil 18], , can be written
down. The formula ( } then enables us to cdqﬂla‘re the value of g.

4-06. The standard error of the 3 a.ré}%h aufrbgall%e_grr}g_in
"The arithmetic mean, , is givenby

','” &, Ly
a,'_”»u& —E+,..+_-
A N

n
O\
As before, A is the m@r;\us associated with each z,. Let H, be the

nmodulus assouated '“'1‘011 a. Then, since &;, Ly .. aTE independent,
we obtain, by 1;& ﬁleorem in §3-07,

N\ 2 1
.g\"” %%(1) i it
J(\N ﬁhe standard error corresponding to H,, then
T @
But, since g?=1;{2A%), we obtain from (1} and (2}
{'2 v
B, (3)
2o @

or, by means of 4-05(5),  #o=

3

n{n—



78 Measures of Precision [4-06

The solution is written
T=at, (8.5), (5)

@ being the most probable value of the unknown aned #ry the standard
error of ¢; the attachment of the double s g Lo g, In (3 follows from
the arguments in §§2-12 and 2-14,

4-07. The formula q =—1— N\

h /=
We assume as in §4-02 that the number, N, of obsm'vatim],;-’\fr\!hrge
and that the errors, ¢, follow the normal law. Ve \
Let 97 denote the mean of the errors taken withont regard i siga so
N

Lo, »
that » = Z i e;|; we refer to g as the average error {7y

Since the error function is symmetrical, wedided only consider the
positive errors of which the number is 3V, )

As before, let nie) de denote the fre queneg\r_uf creors belweesn g and
¢+de. Then the definition of 4 gives

N\
»

s Ny=2nle)de. €5 W
=NIfleldo.c by 4+02(2),
wiww . dbrauli br:&ljyf‘or‘g_ in
where the summation is takén for all valucs of ¢ from 0 to —z0.
Hence we have {\
JONY 2R (s -
¢ \”?;r:—..-J ce e e
\ N vt

The value of th@iiftegral is 1/(242). Henee

N\
4 »
7

O° T (1)

Uik formula gives the qverage error, 7, in terms of the modulus A

,”{»‘Tg}.ri, in the ideal case, the number of observations is large and the

Ngfrors are distributed according Lo the normal law: also, like A and
#, 7 1s a theoretical guantity.

4-08. Peters’s formulae for g and i, in terms of the numerical
values of the residuals

Let %, denote the average value of the residuals v; of # observations
x;. Then v;=x, —a and

1
?}1=£}][-v;[. (1
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Lot H be the modulus of precision associated with the residuals;

then, from 4-05(3), 1 w11

H: n b

I the observations are supposed to be sufficiontly numerous, we

apply the formula 4-07 (1) for a continuous distribution so that, in
the present case,

{2)

T
Hence, from (1) and (2}, O

1 1 /in-1 O\
i Y PV /(_) @)

wno Y AL TR :\}
It is convenient to write X|v;|=[v] in which, of cqu‘i?':ate, only
avrerical values of the restduals are involved. Then (3)'?@0011105, on
rearrangement,

o
\

L Jm[el
b Jnn—1)

N7
P / .\ i

= /T NS 4
"= «/ ()) TR @

ik I]I:'I‘Slr‘(}%'y_or‘ g.in

But, }/h=pg.2; hence

Replacing ./(37} by its numericq’]]\\;«;jg;]

. .“.‘:L [2] o -

This is Potera's formula f&:f;t\-he calenlation of the standard error, u.
The formula (3) ig m\@h simpler, as regards computation, than the

formula O _

A\ . { H} (6)

>N\ 4

obtained n‘§403, as we shall see in §4:16 there is little to choose
between\t:hxs?n from the point of view of the asscssment of the accuracy

of thestandard error, s. . .
Siiiee the standard crror, s, , of the arithmetic mean is ufyn, Deters’s

‘ermhla- for p, is written

o= J ) sz v

As regards the calculation of x and #, in any particular problem,
we regard (4) and (7) as alternative formulae to (6) and the corre-

sponding formula for z,, namely,

[ [e]
wom o)
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4-09. Probable error

Bo far the basie practical measure of preeision introdueed [or o series
of observations is the standard error g#. A sccond measure of precision,
inaptlyt named probable error and denoted by v, is defined as foilows,
Let ¥ be the number of observations the errors of which obey the
normal law, N being large. Let 48 and D in Fig. 12 he the ordinates
of the normal curve corresponding to crrors -r and —#; Lhegy i
defined to be such that the total number of erors in the\fange
—rgegyris $N, or, allernutively, that the relutive frcmmm\:}\ih Lhiz

\

range is . 3@l be noticed that 04 and OC (or +7 and —r) corre-
spond toi';k(e(}ua-rtiles defined in § 1-04 (iii). Now the relative [requency
in the ;1‘2‘1;11gc i

O % [ . 2
RN S ey, orifieshe, S| e,
N ATl AT o

o

N/ that is, by 115 (10), erf (hs). Ilence r iz given by
erf(hr)=4.
The table of the erf function (Appendix 1) shows that
Fir =(-4769. (1)

+ Themost probable vulusof oneofa largonumbor of errors following the arror

Y

law is o { €& ¥ de or zoro, and the most probablevalue of the ecrovs taken
NI —

without regard to sign is 5 or 1i(h Jfm).
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1t 1= convenient to write (1) as

hy =p, (2)
where p=0-4764. (3)
1

I r—p - 4

Then 7 ph. (4)

Hirce g=1;(k 2}, this last formula enables us to connect » with .

g = ‘2 -

Thas r=ppy2 or == 0-67454. 5y « &N

Tn the preceding scetions we have derived formulae for 4 in ter m% N
of [ev] and of f#]. From (3) we then have the eorresponding form;uk\‘

for 7 ([e1) \Y

F= 8745 i )11 ',7.3 b (6)

\,"\\\.
s [#] N4

: =0:6745 [|=]— T, N\
1rid r=0-87 oJ(Q) Ton(n—1)) ,'\\J
or, on inserting the numerical vabe of ( ),Q ‘\v

r—0-8453. LN = (7)

www d Iau |br ary.org.in
The probable error of the aradr‘midw mean, denoted by g, 18 given,

from by
(8), by -raf{) ba4a,ua,
leading to the two alterl}{c'{‘wé formulae

O [l
p :\.}%_0 6745 A/'L-n(n— 1)]

(N 2]

= L
® =0-8453 — —.
and \§“ y =0 AT
N OfS.IB numerical computations it is sometimes sufficient to take
the. Qpﬁ oximations

A% 0-8745=2{3, or, more accurately, 27/40,

and 0-8453=4/6, or, more accurately, 17/20.

4:10. Remarks on measures of precision

For reforence we colleet the various formutae for g, 7 and 7 in terms

of k; they are 1 ]__ =E {] )

2CO
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where p=0-4769, In particular we write

r= 00748 = (-8453y (2)
and = 1-4826r =1-25334. {3)

As we have mentioned in §2:19, the greater the precision of the
observations, the greater is the value of £; hence, from (1), the greater
the precision of the observations, the smaller are the values of FI
and r.

The assessment of the accuracy of a serics of o bservationsds made,
in praetice, either in terms of 4 or in terms of », N

In many European countries it is usual to em ploy xandyn, for the
criteria of accuracy; in English-speaking countries the*use of r and
r, 18 favoured. A\

The transformation from r to x is effected A\means of (3), and
from g to 7 by means of (2), LV

In the examples which follow after the wéxt section, the results
will be given in ternis of both standard erfer and probable error, these
being indicated by s.E. and p.5. respi’ti:z}vely.

S 3
N\

4:11. Summary of rules

It is convenient for refc;‘é:rit:e to gather together the principal
tormulac used wividioratdbdiiveylot&ifment of equations in one un-
known; it is assumed $1#8% the n measured quantities z, are equally
reliable. L

First, the most g)y@bable valucofthe unknownizthearithmeticmean.

Secondly, t e'\c‘h’ixracterist-ic distribution of the errors of ohserva-
tion 1 expressed either in terms of the standard error, f, O I terms
of the probable error, #; the sceuracy of the arithmelic mean is
assessed vither in terms of g, (s.£.} or in terms of », (.5},

Thépsarc two methods of computing x and 7 the first is by finding
tl 3@1;1’1 of the squares of the regiduals, that is, [#»]; the sceond is by
ﬁlﬁ”mg the sum of the residuals taken without regard to sign, that

Vs, [0].

7 Method 1 : J { [vv
= —_ .

7o =0-6745 N/{a-[w] }
nin—1)
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Method IT: |v]
=1:2533 - ——,
2 Vin(n—11
B
e (e —
r=()-8453 1))
_1asss
fa=1 25337;\;"(’:2,—1}1

p,=0-8453 — LNy N
w (1)

Atlso, for reference, r=0-67454, :'\‘
Jid O
i = — i’n“
Hoa= O

7 '\‘n \
¥, =— \"4

“n 2
X AN

4-12. Example 1: the position angle of‘a“slﬁuble star

The cxample relates to seven observaﬁiqﬁé of the _positiou an.gleT
8 of the double star £ 1077 made in A]gril‘;}Q.’:-"? {Greenwich Observations,
1987, B.11). \\rm\?r;;dl;r‘aulibl' ry.orgin

The values of @ for the sevengestlts publis ol Tafige from 301°9

AP0« wra write ¢ o
to 312°.9; we write \ék=3000+x'
The values of x are giv{&girmf the first column of Table 8.

Tabié 8. Measures of position angle

2N
A\.7 ¢
I DG,
N\ r+ o
- -
O - o3
N\ 2.2 — 6-0 fgg
RS 118 36 — ‘
Q) 9.5 13 — 1-7
4 09 1-7 29
129 47 — 221
85 1-3 — 1-%
57-7 126 123 1171

+ The position angle with reference to two stars, 4 and B, close together Ii_n
the sky, is the angle which AB makes with the direction of tho north celestial
pole and is mousured from 0° to 360°; as the separation AB is froquent-_]y of
the order of 17, the measarement of & requiros considerable glkill und experience
on the part of the obsoerver,

bz
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The suny of the firsl column is 77, rom which Lhe arithinetical
mean, 4, of the seven values of 215 8-2. The residuals aud 1heir s fuares
are in the remaiuing columns.

The check that ¢ should he equal to zero is salisfiod very nearly,
the slight diserepaney bein g due to the omission of the secorsd devimal
place in taking the nican to be 82 instead of 324,

Froin Table 8 we have:

n="T; fee]=1171; [p]=12-G12-83=9240 ¢\

We apply the rules as summarized in §4-11. O\
NS ©
Method T MethodJTW
17l 1-2588 . 94- 0
# J Ry “TH3ANN
6 s
o - ¥
fy iz =17 - N VY
L ’\\.: Wt
r 67454 =30 < {F wiTis =382
. A .
Ty — =LA = =12
40 « N\ 4!

®)
~

When one considers the .gr\;ln'pamtiveiy small number of observa-
tions and the selaii dedratdigivaliypargiin in the values of 4, the agree-
ment belween the resalts by the two methods of compuring g, cte,
i3 satisfactory. <

Taking the larger’ values of g, ete., by Method TT we write the
definitive so]u:c-i%ns first in terms of standard error and sceond)] v in
terms of probaple error as follows:

A</

x.\:,,.‘ 7= 3082 + Ha=308%2 £ 1°.§ {s.6.3,
\V . .
and\\.J H=308>2+y, =308°2 +1%2 (r.E.),
Q {

&«
S

o~ \413 Example 2: the mechanical equivalent of heat
\/ We denote this physical constant by X {ergs per 20°C. calorie).
It is found that the measures of X cluster around the value
41800 x 107 or 41,800 x 10®; it i3 convenicnt, to refer to X in terms of
the unif 103, Further, it is advantageous to express X, in terms of

this unit, by X =41 800+, )

From nine measurest of X the corresponding values of & are shown in
the first column of Tahle 9.

T F. E. Hoaro, 4 Fextbook of Thermodynamies, 2nd cd. (Arneld, 193 8], p. 11
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Table 9. Mensures of the mechanical equivalent of heat

@ bl
—_— —t—
- - -+ — u?
— 120 — 126 15,876
22 — 16 — 256
— 42 o 48 2,304
9 — 3 — 9
104 — 98 — 9,604
98 — 42 — 8,464
— 5 — 11 121 A
— 33 — 39 1,521 ¢
21 — 15 — 225 NS
254 200 224 224 38,380\ .7
< 3

The arithmetic mean, «, of the nine values of o is giw@i’.by
= 1(254 —200)=6, W
from which the residuals v (=« —a) are derivedw/The best or most
probable value of X is thus, from (1), 41,806.% 103, Also, Zp=0.
From the table we have Py w
n=9; [vy]=38,380 {v]=448.

The details of the calcu]ationml?@ﬁé:ﬁ:ayfﬁﬁkwy,org,m

MothoghI Method IT
N
: 1-2533 x 448
# J(ﬁ?} =693 — i1g =662
N\ ¥

¢ ‘\ - =931 il =93]

Ha o == N

N’
r \ 067450 =467 0-8745p =446
$

)\::\, I =156 A PR

N\ ® v

I‘qu;é"t-ake the mean of the two values of g, and the mean of the
ﬁ"’»\; wvalues of r,, derived by the two methods, the solutions are, to the

iedrest integer, X = (41,806 +23) x 10° (5.R.),
and X=(41,806+15) x10° (P.5.).

4-14. The standard error and probable error of a linear func-
tion of independent variables

As in §2.16 we consider a linear function, ¢, of the independent
variables x and y given by b—azt by,
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where @ and & arc constants. Tt is supposed that several mersires of
a, for example, have been made, from which the itean, . «and the
standard error, g, have bheen calculated according 1o ithe rules
stated in §4-11: since, in general,

BE=1{2u%), (1)

the modulus, A, for the measures of 2 is expressed i terms of g
Similarly, the values of y, p,and £, are oblained, the nunber of

measures of ¥ being not neecssarily the sume as for 2. N\
The most probable value of ¢ is given by its mean, name! e
FabE )
d=axr+ by. A\

Let pe; denote the standard error of ¢, with 7/ ag t,b‘e\é'o rresponding

modulus. Now, the variables are indepeudent; epee! by 3-07 /10),

1T o B2
o R

%

so that, by (1, ;{.'é,:a?#-g—i—b?p_,z,o\";(}.kj.). (2}
Since, in general, r =0-6745, thesformula (2) ean be expressed in

terms of probable errorsas ™
=@ (r), 3)

www, dhraulibrary org.in
where ry jg the probable.gtror 3 gb,g and r, and 7, are the prohable

errors of the measuredsf  and y.

Ftis to be n.otcd.{t]}at the formula (2} is the same as 2-16(3).

In §2-16 it whdassumed that the number of measures of  was the
same as the humber for ¥, and thut the measure 2, was associated
with the meadure y,. It is now seen that when the prineiples of prob-
ability aré;\iﬁvoked, these restrictions are no longer necessary so
far a.s,,ﬁ‘r;l} derivation of (2) and of (3) is concerned.

:Elia.t['ox'mula (2) and (3) can clearly be generalized for a linear
fitadtion of any number of independent variables. Thus, for example, if

o ¢=az+by +cz,

’"\‘ w4
’ then pi=atui+ b4+ c%? (s, {4)
Similarly, ri=a¥ibyi4+cy?  (p.E.).

The theorem can also be expressed in terms of errors. If ¢z, ),
« and g are true values the error, ¢, of ¢(%, §) is given by

e=@(Z, )~ ¢(w, ) =a(Z — 1) +b{F—u.
Then, if ¢, and ¢, denote the errors of 7 and ¥,

Eg=X—x, Cy=Y—¥;
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hence ew=ae, +be,,
from which, as hefore,
= pl =i+ Dy

Note. If the function, ¢, in two variables 2 and y contains alse

constant so that
¢=ax+by+k,

we can write this as p=ax + by 4k,

where z=1. Now, z being constant, the ‘standard error’, g, is Zero;
hence, by (4), o 2.B L a3 O
’ He=0 'z+b#’-1n A ¢
oA\
as in (2). The formula (3) follows. A\

4-15. Illustrative example AR

We consider the simple problems concerned with thew dsurement
of (i) the perimeter of a rectangular field and (i) thiagea.

Lot x and y denote the lengths of two adjacg@sides of the ficld
and we suppose that m measures of @ arc mz}g@ and, indopendently,
n measures of y are made. \9

1f 2 denotes the arithmetic mean of the measures @, (i=1, 2, ..., 7}

and u, is the corresponding residual, then
BRIV & codffary org.in
=T — 0 %ﬁ’ﬁﬁ"" ‘?}f’, otk

Thus, s, is computed.
Similarly, if b denotesibhfe arithmetic mean of the measures #;

(j=1,2, ...,n)and & is{ﬁé”borresponding rvesidual, then
C [22]

QF=y;—b and ﬂ-§=;‘b__1
{i) The Qa@‘;er, P, is given by P=2x+2y; hence by 4-14(2),

O i3 =4+ pd),

a-rgg;"iég";-14(3), ri=A(r2472).

\(i})“ The area, 4, is given by 4 =xzy. This expression for A is not
linear. But write c—atl, y=b+ "
then A =gb+bE+an+Eq.

Now, in o series of reasonably precise measures the final term, &3,
may be expected to be small compared with the remaining terms.
Neglecting £y, we then have, by 4:14(2),

# =g+ ety
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But, by the Nofe at the end of the previous section we have, by (1),

He=Hes Hoy =y

2 g2 20
Hence # =0k ott.
Similarly, TR =024 aml.

4:16, Precision of the standard and probable errors A~
(1) Infroduction. We shall suppose that » measures of a yuankity, x,
are made; these may be regarded as forming a sumple of o €y large
number, ¥, of mecasures, actual or potential, which g\s’n}hsihntiall i
eongtitute a continuous distribution. We «hall assumk shat all mea-
sures, whether # or ¥ in number, are ('.'-O_T.'lS'id(-‘-I'(:‘d.Qquffﬂ}' reliable 8o
that the associated modulns. 2, is the sume f{)r"gﬂ\l.'\ff there had heen
N measures, as for a coniinuons distributiqhy\tlie standard crror, g,
would be given aceurately by \
AY;
om0 m
T 2pN
We regard  as the true standard error.
The two formulae which havedagen derived to enable us to calculate

the standard error of # actualapBasures, denoted here for convenicnce
by 4, are www.dbraulibrary .org.in
v [ - NS

» pay

" 2 . 2)
O #e n—1° (
and {Peters’s formuh)
Y IKQ _ T By | (3}
M= J 2 ima—1
N\
By 4-055(1.}‘ the residual, #,, for example, is given by
N>
\/ n=—1 , e
& NS AT
”\ﬁ;nd, if H is the wnodulus associated with the residual, then, by 4:05 (3),
’ 1 w11
H2 5 p2
[y L @
and, by ([}, EIQZZ(i"n-]LE i (4)

The modulus, H, is the same for all residuals,

If » is a small number, say 8, the formulac (2) and (3) may be
expected to yield only approxzimate values of the true standard
error, p.,
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The object of this section is to try to assess the error inherent in
the computed value, g, derived from the » measures of the sample;
we deal with (2) and (3) scparately.

(i} Formula for p, in terms of Xvi. We consider formula (2}. Let
e denote the error of g2 so that

e=pi—pit. &)

This error, which Is related to the sample of # measures, may he

positive or negative, From (5) O\

(o4 =g, )
or, by (2), \
:”}5

\ A

(= L)€ 42— L) e = 5% —(m— 12
r 4 '\'
S SoHE0R) — (n— 1Y (k).

Let M{ X} denote the mean value of X;in pag?-i@uzlar, let M (6= p3,
50 that s, is the standard error of the ¢’s. Then ™

(n—1)% g2 2{n— 12 2 M (6) = TH (vf) JR'E'M(%;?} ZIM)— (n =12t
: AN (6)

_ ww'\).;:abrauljbra Sy .ore.in .
Now, in genoral, if & is the modulus associated WAtE & quantity, x,

subjeet to the normel law, t}:@u
¢ ‘"f}\ k(e
Mgy =— [ ek g, {7
J—w

From the vajte®/of the integrals in §1-14 (v}, we have, applying
(7) and remefdbéring that the modulus associated with » is H, the
followings ()~

{% m=1,

T

. ."\\;’ H (= | Rt g 1 .
W m=2, M(wﬁ):r—ﬂf_wvze " dv—ﬁ,

QO B

Mig)=0;

H r= 2
m=4, M(?}d‘) = r—J. 1}46_32"’ de= -4_@ .

.\.' Fi

Then, since there are » terms in the ¢ summations and n—1 terms in
the § summation, (6) becomes

| 1 ]
(%—1}2ﬂ3=§i+?ﬁ(ﬁ§) (n—1) (ZTP)'“(”* 1 g,
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2
or, by means of (4), ai== e,
7

i
or Ho=pt A'/ .
7

which thus gives the standard error of ¢, 4 ene, in terms of standard
error, we have >
— 2 - f a - o oy
CEH,— = s - 8.1, [8)
fo—t 3 J S A

If vy is the probable crror corresponding o s, then o
' N\

2 N
o= oty =yt - M

Q
N

where o =0-6745, Then, in terms of probable errca\f‘;:{:'ﬂ} becomes
\:"‘3

¥ N’
E—gt= tant 2 (Bb),
Je— = top ~/,R (\\JJ

or, if r and r, are respectively the true prﬁlﬁiblc ertor and the probable
error calculated for the sample so thatw’=ax and r,=cp,, then

'Y o
. s R
rE—ri= et /-

_i_

(r.E.), {9)

1

\"‘ i
www.dbraulibi’@f‘y,org,in
e 2\}
From (%), ~E={re /7Y
€ N

f—

N

n
if # is not too snw\ May 746, we obtain an approximation to the
Iy

right-hand sidq, Jby‘the binomisl theorem, as 1 + 34/(2/n); hence
N = 20907 (s, (10)
A N
Simila.g}y\;}rom (%,
M\ 2 r
L\ —r=+ —= 104769 - E.). 1
vf;\ Fo—7T _éar,\/n + 04768 in (r.E.) (11}

~\: iﬁhese results may be summarized as follows:
/ the standard error of the computed quantity, s, is 707s/An;
the probable error of the computed quantity, r,, is 0-4769¢//n.
() Pelers’s formula. Lety be the average error of the ¥ measures;
the relation between ¥ and g is

w=1.{4m).
In Peters’s formula (3) let 3, denote the caleulated value for the
zsample given by
P P 31 v |

it T}
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Let ¢ denote the error in a, caleulated according to (3); here e is
not to be confused with the ‘e’ in (ii). Then

= pto— = oA 37) — 1 (12)
from: which
e® 4 2ne ﬂ{E[u ¥ —p?
T2 n{n—1}
m .
= — [Zel+E|niE —pt i}.
2’!1(?‘1,—1}[ -+ Ivag ]’Uf]] # (Jzi: ) A
With the notation of {") re
¢\
Mie®) +2p () =5 ( (B +2( (T ) (o DT =83 ™
Let u, be the standard error of the e’s; again, not to be conﬁ)ae& with
the standard error in (ii). ) m\
As in (D), o 1
Me)=0 and H(f)= SEE
oo ’x.\
Also M{vh=" | v e—ff’v’dv;:’?f\ﬁ
Hence e
7 &Y., Y
(7 =208 _ [ rrrs 21

or, by (4), #3:—'2. = 0‘135avl—.n . (13)
From (12) and (13) we H&}e

NCeilaln +07m5_k (5., (14)

the expresﬁgs( Oh the right being the standard error associated with

the e's, \~'

%mxlaﬂy as in (ii), the corresponding formula in terms of probable
erTopags

& \ud Fo— T = 10-5{}96-,— (e.B.). (15}
N/ ) V%

(iv) Comparison of formulee (2) and (3). Considering the two
formulae (10) and (14) relating to the two methods of caleulating the
standard error by means of (2) and (3), we can write (10) and (14)

regpectively as 8.3 of g, O707
W - A

8.8 of u, 07555
and - =
‘-‘L \,"?1-
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These lormulac show that, in general, formufa (2) = shghily superior
to formula (3); the latier, however, as we have secn, hasthe advantage
ag regards simplicity of caleulation.
Bimilarly, from {11} and (13) respectively,

v of r, (O-4769
= 4 - .

—_ - - 16
v ofr 0-5004
and PO + - L N7
¥ Jn
N ¢
which show that (2) is slighlly superior to (3). (\)

A\

The preceding formulae emphasize the approximatd tainee of the
eajenlated standard and probabie ervors when the mmib’e rof measures
for & sample iz small. Consider, for example, (Iji[&s} (I7) when n=19;
from either formula the probable error of r, igabettt 16 or 17 ¢, of the
true probable error. Also, since the Pos., 7,3 Z’N}he arithmetis nean is
7oy, these results apply egually to ,g\i} compmted value of the
arithmetic mean. For larger values ¢ A say =100, the culealated
percentage is about 5 % and, in thiddse, the values of the cnleulated
probable errors may be taken to'wdpresent with sufficicnt aceuracy
the true values of the prohable’jgf&ror&

a3

al e

A :
www.dbrayltbrary org.in
N\
N\
)

A\
g 4 »

Ve N\ W

AN/
X;\.”;
O”
Q
R\
N
AN
~\J
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CHAPTER 5

MEASURES OF PRECISION FOR
WEIGHTED OBSERVATIONS

5.1, Weighting of observations

The weighting of observations is a process which talkes into account
the superior quality of cne set of cheervations over ancther schofy
ohservations, the latter, made perhaps under poor conditidny ot
parhaps by a relatively inexperienced observer; even if the.gxternal
conditions do not vary from one set to another, the supcrierity'of one
set may consigt in the larger number of individual meuSures as com-
pared with the number of individual measures of @gecond set. Our
problem is to investigate methods of combining\different sets of
chservations of varying reliability, and this is‘{@’hieved in terms of
weights applied to the final vesults of ench get ef measures.

The methods of weighting which will be ‘ednsidered in turn arc as
follows: (i) weighting according to the utunber of individual observa-
tions forming & set; (ii) a-rbiw&éﬁig@ﬁ%ry%g%_i‘ﬁhe external
conditions vary from one set to agother; (1) weighting according to
the standard crrors or probable etrors derived for the results of the
several scts. ’\‘

5-02. Weighting ac;co\hing to the number of observations in
a set e 4

We consider, foy 6xample, several sets of measurcs of the position
angle of a dp].kbt} star made by the same obzerver on nights when the
observing \éenditions are assumed fo be equally favourable (sce
§4-12); all the individual measures arc then to be regarded as cqually
trusﬁxgéi‘fhy.

“@n.tho first night the obscrver makes #, single measures and, all
these being deemed to be equally reliable, he takes the arithmetic
mean, &, to represent the value of the position angle resulting from
the night’s observations; then, if Sy denotes the sum of the individual
measures, #,a,=9,. Generally, for the ¢-th night, the corresponding
(uantities are #,, o, and §; with the relation

8,=na;. (1}

Suppose that he observes on six nighta; the total number of individunal
MeASUTES I8 Hy+ Nyt ...+ %= L0, and the sum of the individual

N\



by 404 (3),
,«\; w:
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measures is 8;+S;+ ... +8,=%5, Henee the arithmeiic mean, a,
of all the single measures is given hy

A=25,:Xn,, (2}
or, by means of (1), =Yn N, (3)

Instead of caleulating «, according to (2), by adding all the in-
dividual measures for the six nights and then dividing by the total
number of individual measures, it ig niuch more conveni i foe the
observer to derive the valucs of g, resulting from each nights dhserva-
tions and then to caleulate ¢ by means of {3), Tn this case theiumbers
7y, By, ... are the weights of the quantities a,, a,, ... and liT\-‘ commonly

denoted by ey, w,, ...0 the total weight, T, sl - w00 ... or
: wy-+ ..., 80 that _ AN _

iy + 80 tha TV =Zw,. \\ 1)
" g B, W .
Then (3) becomes ;= 1. (5}

= N\
H ¢ N\
a 15 called tho weighted mean of the severil results @ 1ty ... Obtained
from the different scries of observatiaﬁs. It will be shown later that
the weighted mean, a. is the mgdt probable value of the nnknown.

As has been stated, the iphvidual measures are assumed 0 be
cqually trustworthy. Now, if$he total number of individual measures
iz denoted b}f‘l‘\wf“é%ﬁ?leil %Ely c?;,gm, 2y arc the individual measures,
then, hy (2), 2 »

N amtrtetotay o
\\ N/ ‘_Nu

which shows that @ is the weighted mean of the & mecasures if the
weight to bddttached to each measure is unity. Thus, we can describe
the eqqs{l}r.’ trustworthy individual measures as megsures of unit
weighte &

\f;?iu and &, denote the standard error and the corresponding
wiodulus of the individual meassures {each of unit weight); then,
e 1. 7
#o= 2!':,3 ' @

Consider now the arithmetic mean, a;, of the {-th sct of measures,
w; In number; then, by 4-06 (3), the standard error of a, is given by

2
e fo_ 1 8}
& W wd2hG)’ (
and, if k; is the modulus associated with iy

I
B~ 9
i 2% (9)
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From (8) and (9) we have  Af=w Al (10}

Thus, A, is given in terms of the known value, w;, and of &, which iz
regarded as a constant in the circumstances concerned.,

These formulae will be used later.

Returning te (5) we remark that, in calculating the arithmetic
mean, «, only the ratios of the weights need be considered, for if wy,
for example, is the smallest weight, we can write (3) in the convenient

form e, 1,
ty + a,g(a-;‘—) + as(u—‘) +...
a— 1 i : {il1)
e TR O
Wy wy "\

Thus, o is obtained in terms of the relative weights, the ijgh}c' of a,
being unity. ™\ 3
A\
5-G3. Arbitrary weighting \%
We continue to consider the moasures of the\pbeition angle of a
double star, but now we supposc that the Dhcf\éﬂvmg conditions vary
from night to night. AN
First, we suppose that the same numbér of single measures are
made on each night and that the agithmictic means for the several
nights are a,, gy, ... 1If a;, for” &\ﬁi‘gmeilﬁlé]?é'ﬁ Yo hfniEht when the
abgerving conditions are good aidag when the observing conditions
are poor, then on general grounds ¢, would be accorded a greater
degree of reliability than geaThe observing conditions are, of course,
boeyond the control off tkg-)uc’)bsen'er and the best he can do—unless
he adopts the suvstem\ weighting, (iil), mentioned in §5-01 and
illustrated in § 5.404d) and (iii)—is to assess the effects of these
conditions on hidnRéasures according to an arbitrary scale, the ‘scale
of sceing’, as Wi ealled. In the present instance we may suppose that
the seale is&aken to be: 1, 2, 8, 4, 5 or, symbolically, s;; on this seale
8, denotéd\poor conditions and s; denotes execllent conditions, with
a-Ssegsfrfénts 8y, 55 and s, for intermediate conditions. As a result of
Bxg’&ﬁence the vhserver then regards a particular measure when the
“seding’ is ¢,, for cxample, as cquivalent to 4 measures made on a
night when the ‘seeing’ is s;; thus, the weight in this case is 4. In
gencral, the weighted mean, «, is given by
PR
T I,

H

L

Zap;ery
or, by 5:02 (5}, O'»=T :

in which e, =, and W =Zuw,.
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Secondlv, il the number of individual obgervations varics from
night to night, 7, corresponding 10 «, with the seeing” denoted by s,
the weight to be atlached to a, is » 855 ther ¢ ts given by

=205 1, 20,4,

Mot
or ="
2w,
where w,=n,s,. N
In both cases we can regard the measures made when thigSeceing
is §, as measures of unit. welght, with modulus £y and standged crror

. . . i . ¢\ s
#o- Then, as in the previous section, il hepand g refer to Al ATithimctic

mean, a,, with weight w, | we have Dl
. l“..‘
A AD 1
pi=t e )
w, m\
.
and A= 2. RN (2)

5:04. Weighting according to sra}td'ard errors or probable
errors O

As an example consider the@stermination of the mosi prabable
value of the }:F‘qugléf,rfghﬁgJJg%é}lg1,!5(1 h(_‘-l"&- by &) deriverl [ rm.n med-
sures made by 7 differeithobservers using the sane or different
experimental methodsea

An observer, 4,, ithakes a serics of ecually reliable measures from
which he finds, by the'rules givenin §4.11, {I} the most probable value
of the unknowp;\iame]y, the arithmetic mean, «,, of his measares,
and (i1) the standlard ErTOr, 4, ot the probable error, 7, , of the arith-
metic meah S, . Tt is to e particularly noted that here g, denotes the
value of (g ssocialed with «,. Thus, if the individual measures, pin
" bi{;j\;‘zire Ty, Xy wnny Xy, Lhen

* ."\\ g, = -zlxi :
S 1 i a
',,\‘:; Vi
\”\3“:11&'0, il v, {z=u;~ua,) i the residual corresponding to z,, then, by
4-06 (4); .
5. 2 [ze]
MEpg=— =
Plp—1)

The probable error, #, =#_, of the arithmetic mearn, ¢, , i given by
r=06745u,.

The values of g, and r, may, of course, be found by means of Peters’s
formula,
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The definitive results of this ohserver arc:

ii} veloeity of ight =a,,

{ii} standard error of a; =g, , or probable error of ¢, =7, .

Considering now the work of the n observers we have the tndividual
reswlts represented by the arithmetic means

a’]r I.'I-2, sy By
together with the corresponding standard errors

;ul! #2’ "‘?ﬂn!
or probable crrors Frs Fa5 vens Ty Ko
and the associated moduli

Byy hyy eons By N

11 genera), the several values of g, (i=1,2, ..., M Geill all be
different; in other words, the arithmetic means, g, ¥ilkpe determined
with varying degrees of precision represented hy Jbhe weights, w,,
io be attached te the values of the arithmetic @edns, Thus, we can
stippose that a result, a;, is equivalent to wi‘nﬁfﬁ;’ures of unit weight.
Further, if 4, and &, refer to a particular deterfnination of a;, regarded
as of unit weight, then by 5-03 (1) and (), &, being the modulus

2N

corresponding to #,, ® o
P = # \\#éhi.&gr‘aul ibrary.org.in (1}
W=~ 73"
e B
The woighted mean, o, of&he n results is given by

£ )

L\ S, @)2
N Twe, T\

> hdl! - - .
N\ W 5 (@) :
o ) M

N - .
Suppose nbirthat the largest of the standard crrors of the arithmetic
means ds\y; then, discarding the factor #% common to numerator
and denominator of the above expression for ¢, we have

m\\' W

\; El...g.iq_i__“_i_g'@
3 a Fn
1 1 1
TR
a1+a2(’&)2+-w+an(;_l)z
AL (2)

3co
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Here (pi0,)? 1 the relative weight of the arithmetic mesn, o, the
weight of 4, being unity.
Sinee P =TT

which follows from the rvelation #,=0-6745x,, the formulae (1) and
(2) are, in terms of probable crror,

i R
u i = ‘) 3 (3}
-?;. ;l-a
7y . |1
al+(r2(l?—) +..._—ffn"}l-) A o
st = 2 . R \) (4)
(ryhe (rhT N
l—l.-(- +...+(-- W
fy s (""«,
The relative weight of the arithmetic mean, a.\,{s e

5:05. The weighted mean is the most Iﬁi"obabic vaiize of the
unknown IR

This theorem can be proved veg%s?h]ply as loflows. In 5-02(6),

¢ is the arithmetic mean of ¢l théNfdividual measures, N in number

and all of equal weight, made by ‘the a obzervers und is accordingly
the most probable vqlue of the unknown. But, also, by 502 (3},

=20, 0, X0y Oky HEP&&EB&W 8rg.in
Y a;
.\ “= EH
Henee the wed \‘bc& mean is the most probable value of the wiknown.
An al’rerna’tpe proof is as follows. Consider the n separate and
independe@ity determinations, g, of a quantltv whose true value ig &,
a; beiygithe arithmetic mean of the i-th set of individual measures,
Py 1rwgumbpr
\{e have n separate equations, each with its appropriate weight,
Jofithe form .
N m,—xr=¢;, (weight, ),
”\; “ where ¢ is the error of a,. The standard error associated with a, 18
N\ His mth k; as the corre&pondmg nodalus; then, by 5-04(1),

hi=uw R, (1}

in which %, refors to a particular determination of a; of unit weight-

Hhisa um.xll quantity related to the deprec of accuracy s attainable
by the meazuring apparatus, the probability that the error of a, lies
between ¢;— +k and ¢, 4+ 3£ is

khy exp{—hiel} or ﬁ? exp {~ Ao, —x)*},
N /T
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iTence the probability, £, that the n orrors €y, ..., €, oceur Is given
by ;
P= (—) (k) exp{— Lh¥a, —=)%}.

AT

The most probable value of the unknown is that which makes P a
masinum or that which makes E=3%kX¢;—2)® & minimum. The
conditions arc (i} dE{dx=0 and (i) d°E{dx?> 0. The second condition
is chviously satisfied; the fitst condition gives 2h¥Ha,—x)=0, whence
the most probuble value of @ s Xhfa,/ZAY, or, by means of (1},
Yoy, 5, Accordingly, the most probable value of the unknoyn

2 AN
NS ©

o N/

is the weighted mean, «.

5.-06. Redunction of weighied equations to equatiq;ié’ “of unit
weight \\
We write a typical equation of weight w as \J
X—x=¢ N ()

‘L
where X iz one of the values a;, 4,5, ..., @iy &‘&bl @ being derived from
a set of observations, and e is the corresponding error. Eet g and & be,
respectively, the standard error and.madulns of precision asgsociated

with € so that ;ﬁu_ﬁ\:{}kv(ﬁﬁ}‘_aulibrary,org,in (2)
Now, in general, the p1'<)hahflitifl p, that an error occurs between €
and e+ de is given by ~\
= ¥ A R 5 e [
Cp=r e e, (3)
\ N7

Define an erl;nfs;xg,“ ’by £=c¢e {¢>1); then we shall assume that £ is
assocated w,it\}i'{in cquation of unit weight, with modulus A, and

sta.ndar(lﬁ"“ryi" o In terms of £ (3) becomes
0\ i’

N\ ) h? 2}
™ p=—expl— = £ dE;
) P cAlT Pl ‘52§
’"\\ w4
X‘hﬁs # is the probability that an error, £, occurs between £ and £+d&,
the modulus being kic. But the modulus i3 also fy; hence
k

}.‘.:-
i} C}

which becomes, by means of (2} and the corresponding formula for

o, namely, p2=1/(2h3), A
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Now, tho weight, w, is defined bry

2 2
et
At u’
Henee £= e, (4}

Multiplying (1) by ¢: then, by means of (£)

Jw (X —a)= Juwe=¢g, ~
which is an equation of unit weight. Thus, in general, i,o:.mqiuce the
equation _ \ e

r,—w=¢g; (weight, w,) U

7% .
to an equation of unit weight, we multiply throngleut by e aund 80
obtain the equation ) . RS }
N (= ) = o600 (5)

Note. An observational equation mughgiot be multiplied by any
factor other than the welght when [td$40 be combined with ather
equations of a like nature, for, if (5‘)’;'&1 multiplied throughout by 2,
for example, it becomes un equation®with fictitions welght 4,

L R Y
Nl

5+07. The fmﬁ@‘[ﬂﬁlﬁl%m‘g-i“
¥ —
We begin with theGcquations of the form
e
\\\ af_-:r:Ea: (“’.—Cight! ?U‘.‘Z)a

where, as hefer®, @, represents the result from a particular sct of
measures AReduced to unit weight this equation becomes

\Y Ve, —z)=Juw e, =E;,

\"4
A\s\%e have seen the most probable value of the unknown is the
~Weighted mean, . Let o, be the residual corresponding to the result
\t;; then
M\: ! ;—ad=1%v,
and Vo, —a)=Ju,v,=V,, (1)

Thus, the residual V; corresponds to the error £

There are n equations of the form (1), each of unit weight.

Now, g, is the standard error associated with the errors £;, the
corresponding residuals being ¥;; hence, by 4-05 (3}, which relates to
equations of equal weight, 5 |2
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PRV
or, by (1Y, 2. T
v ( ) Ho w1
o7, in the (fanssian notation,
jrwey]
A . 2
0 —1 ( }

This is an important formula which enables us to caleculate Lhe

standard ervor of unit weight from the residuals and weights of the

n equations,
Returning to (1) we can obtain, by a similar process, Peterg’s

formula for 4,. Now, by 4-08(5), ()

Z ’\
AR
= 1253 -, A
Fy=12533 T
” R
or, from (1), po=12533 “’{:-F: u_v]l_)}’ 3 (3}

in which the numerical valuecs of the rcmdugls, », are to be used,

irrespective of sign, NS,
The equations (2} and (3) provide alternat-ive methods for cal.

culating the standard error of unit weight.
Since in general r=0-6745.2 tiedisavhibrar@praénd (3) can be

expressed in terms of the probab}e.error ¥y, of unit weight. Thus

'ronmfelﬁ,\/'[ %“’]} ()
\\ n—_-
and :”?‘n=0-84 [x we] -
A</ «,{ }

As mentim{éﬁ 1n §5:04, it is convenient in practice to associate
fgand vy z?\ith"thc cquation of lowest weight,

'\
'(Tf}szw‘The precision of the weighted mean
he weighted mean, a, is given by

w, Wy Uy
a:(ﬁr) a'1+(-pr)a +. +(H]) Brs (l)
in which @, @,, ... are the results of the » independent series of
Measures; g, , fy, ... are the standard errors associated with the results

@y, @y, ... As before, 4, is the standard error arising from presumed
measures of unit weight.
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In chservations such as those deseribed in §§53-02 and 503 the
weights w, arc known; the standard errovs g, associated with the
results ¢, are then found from the formula

= 145 (2)
in terms of . Inn the type of investigaiion deseribed in §5-04 each
observer records the partienlar standard creror g, and then the corre-
sponding weight w2, 10 be attached to the corresponding resuil can be
found by means of (2} in terms of g,. N

Let g, be the standard error of the weighted mean givem b (1)
Then, by the theorem of §3-07, the » ro..:ult: ., My, . ’be\w in-
dependent, we have A

5 Wy w, ")‘2 : 3
i (H) ,ul T (H) 9+ +(H ' e‘n'"‘i

This formula becomes, by means of (2),

Hence

www.dbraulibg%ﬁ.ﬁré.in
in which p, is given by {2)°wi 13} of the previous section.

The probable error, 7§, bf the weighted mean is given by

\"™ S
\ '?ﬂ- NI.-"H.-’ ?

in which ro‘i%’é}\-:én hy (1) ar (3) of the previous section,
xt\n’
5-09\:§~Immary of formulae

'I,'he results from «# independent series of measurcs are gy, @z, -+ o

,~the corresponding weights arc w,, w,, ... , w0, Which are found, .-1cc0!d

Y

‘g to circumstances, by the consider a,-t-lons debcnbed. in §§5-02-504.
The weighted mean, ¢, is given by
e P TR L
W

where W =w; +ws+ ...+,

The residusls vy, =0, — 0, 2,=0,—a, ... are oblained.

As in §4-11, it is convenieni to summarize the various procsion
formulae, first, in terms of the sum of the squares of the residuals
and, secondly, in terms of the sum of the numerical values of the
residuals.
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Methed 1 [w'j_!v]
= {n -1 } !

7o =0-6745 J Iﬁfﬂ}] ,
n—1
B [wow] ~
‘“’“_ﬂ(n—w]’

—0- [ fueve]
7o =0-6745 N/‘t(n’—l} W}.

Method T1: 19533 v RY
/=12 -1y O
e [yl ¢ .( h
ro=0-8453 i L)
*o \.f'{n(%— 1}} H \:"\.\ &/
po=12533- 107 )

e T AN
\f{n(-?z.l— 1) W} R \ 0>
_ Hutd AV
J{nln— ,.lj:’W} ’

www dbiraulibrary.org.in
&Y

7, =0-8453

5-10. Examples
(i} Weighting by number of méigures. We consider the seven

measures of the position angle, (8 of the double star #1077 given in
Table 8 (p. 83), but we nowﬂ?}ppose that the number of individual
measures on cach night zi{* 212, 8, 16, 8, 12, 12. Binco the ratios
of the weights only are peguired, we can discard the common factor, 4;
the resulting we{ghts;’q;f;'a.re shown in the second column of Table 10,

Asin §4-12, we gfils”  0=300°+2"
i"\.:'
N .
. Q Table 10. Measures of position angle
~\’::~‘:; o 1w
'“\s s ——t—— —— .
\{ p w s + - + - wed N2
11 3 57 — 61 — 183 11146 10:6
22 3 66 — 58 — 174 100-8 10-0
i1-8 2 9238 38— 6 — 288 54
95 4 380 1.5 — 60 — -0 30
9-9 2 198 1-9 — 38 — 7-2 2.7
129 2 387 4.9 — 14-7 — 72-0 8
&5 3 28-5 1-5 — 4-5 — 6-7 26
20 160-8 136 119 366 357 3361 42.8

Swmmary: n="7; W=Sw=20; Sz = 160°9: [wwv]=336-1; [y |e|]=4%8.
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The weighted nican is given by

Zuwx 1609 ,

= - =-5— =580 (toone decimal place;,
53 20

The residuals acecording to sign are found in the fourtl: column.
The near equality (numerical) of the positive and negadive sums in
columns 6, 7 affords u cheels on the work up Lo this polnt: *he small
difference is due to taking ¢ to one decimal pliee only. A

The entries in the final column are the sOare roois of rhesorre-
sponding entries in the penulilinate column aid are writ fodown by

i . N
nmeans of Barlow's tabhles, £\
We apply the rules as summarized in §5-04: e
N
Method I Mythand 41

JEEL 125335098
e T =518 S~ ) N2

AN B Jud

A\,

e oo Lrer SO L s

2 NV 20

¢ 3
‘rn O-BTd8p, =505 (NY O6T450, =858
] ’:’
ro e g F”O =125
W, dbra\’fl?brqsy Yorg.in W

The results by Method I’:ife, to one decimal place;
CP=3080+1%7 (s
and N\ \\ 7=308°04+1°1 (p.E.).

The valugdg of the standard crror and probable error given by
Method I'afe a little larger than the values found by Method 1.

(i} Weighting according to probable error (first example). We
consder the eight separate and independent determinations of the
vc[t}nit-y of light, made between 1951 and 1954, in Essen’s list.T We

¢write the velocity of light, ¢, in km./sec., as

’”\\
\/ 6= 209,790 3 .

The values of z are in the first, column of Table 11 and the published
probable errors arc in the second column.,

The probable ercors vary between +0-2 and +7-0; it is convenient
to take an intermediate value, 7= 1% 3-0, a3 of unit weight. The weight
of the first determination iz then (3-0/0-2)% or 225; the remaining
weights are in the third column,

1 L. Kssen, Erndeavour, 15 {18581, 90,
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Table 11. Measures of the velocity of light

I.L.
- T W Wi © wy wyt Jwlv|
G-1 B25-0 + 6975 + 01 +22-5 2.25 1-40
14 2-48 + 13 + 12 + 30 360 194G
7 1837 + 478 — {4 - 73 2-03 1-71
70 U-18 - 25 — 170 - 31 52-70 728
3 1000 + 300-0 G-0 o0 (-1 L]
BRE 1-0 — 2 - 32 - 32 10-24 3-20
31 0494 + 47 + 2.0 + I.8 3-80 1-85
g0 (25 + 3 - 10 - 2 020 045,
348.2 1058-3 7571 1797
St rary : NS ¢

\
hem8: W oSw—3482; Tww=10583; [ww]=7571; [u|v|]S1l%87
N

Twr 10583 (O
The weighted mean a-z-%x =3—48-E=3-0; the Iﬁ‘&t probable
vatue of the velocity of light is then 299,790+ 3 9\1\299,793.

We caleulate g, and rg: \ L

Motbod I AV Method I

757 WA 12533 % 17-97

1: x 348-2] W“"}?fdbl:au n‘é{%ﬂ.y_ St
a 06745z, =028 0-11

Taking the larger values of@a and r, we obtain the following results:
cxzq‘g;%gs-oi 018 (5B,
L £3209,793-0+ 012 (RE.).

1t will be obzdtwed that the first and fifth measures {with relative
weights 225 ;3{('1}"1.{]0) make by far the biggest eontribution to the

results, \/
(iil) Weishting according fo probable error (second example). As a
£S5 eight determinations of the solar

secopdipXample we take the fiest !
}J\f:{»ﬂlaix, I, derived from declination observationst and tabulated

b¥nSpencer Jones,
We write [T (in seconds of arc) as
I =8-7900+ 1074z

The values of z and the probable errors of the corresponding
determinations are given in Table 12. No. 4 has the Jargest probable

+ H. Spencer Jones, Mon. Not. R. Astr. Soc. 101 (1941), 3601 fourtesn dster-
minations are piven, but for purposes of illustration we take the firat eight of

the tabular results only.

N
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error and we take this result 1o be of unit, weight, The wei
no. Lis then (££)2 ot 6-64; the other weights are found in the
2233

T 3200

NG WHY.
The weighted mean is: « =t-6. The residunl: are then

cntercd in the table.

Table 12, Parallas inegsures

!
i3 - A
No. © =+ it +- — 7
1 - 3t 265 6tid REATH - -+ 5
s + 33 40 250 80 .- booiEg
o4+ 08 2 864 531 - . 4 14
1 =123 87 106G 1230 — +116-1
a + 4 33 4-12 247 — — {6 o \ -
6 — 24 39 49:95 — 6T — 326 NNV 062 3.136 a6
DoT i m e g —oaes (NS 1180 2l 40-3
8 —~ 35 83 412 = 1442 s/ L q714 71300 844
&
3400 5246 3011 N 3871 3881 33502 4289
‘05 \’
Summary: n=4; W =Zm =341, Swae= £ 2335, [wer] =33,502; M ai] =428
“’:‘:;l‘
i . - lecimals A R - “, T RTTO0T.
]? four pla-cgawo\g (c\ Ei%El‘JifJ}y%gEgt10+0 0007 =8"-7007
We caleulate’sd, and 7 s
;\I{E‘hod I Method TI
¢ L R33502) 11 12533 x 4289
fta [773-1}_ ' Jistxsyy T
Yo _ sy 067430, = 80 3
N/
The unit'jnwhich g, and r, are expressed is 070001,
In ter\ﬁiéof probable error the evaluation of 11 is given lry
O .
R\ [T=8"7907 + 0"-0008 (p.5.).
i"\‘.‘;
z*\ w4
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CHAPTER 6

HQUATIONS OF CONDITION IN
SEVERAL UNKNOWNS

6-01. Linear equations of condition
Lu many problems the measured gquantity is related to several

1m]<r1':_awn-s, frequently by means of a finear equation. For examplel \
the determination of the parallax, 11, of a star from photographie”’

observations is dependent on tho solution of a set of linear equetions
in which 11 and the component, g, , of the star’s proper motioh are

7

unknowns, each equation being of the formf S

all + b, =m.
NY;

Here 7 is a combination of a measured quar;t't-ii}t.nd a known con-
stant, ¢, the latter being determined by méahs of an independent
provedure; it iz convenicnt to refer to Simply as the measired
guantity; alzo, corresponding to & pacrtic’lﬂar value of m, ¢ and b have
Lknown nurerical values. In § G-W@ﬂhhtd@/gmgpmf equations
with the above form will be considgired in greater detail.

In dealing with principles & chall congider n equations in three
unknowns {x, y and 2) of q}%e:form

X \x}l”—f-bsy"f‘cﬁz:mw (1)

in which wm, is thg *(rie&sured quantity and the eorresponding valizes
w5, b; and ¢, are Juhodn. Tt is assumed that » is greater than the number
of unknownsyinthis case »> 3.

We r'efeai’bo"(]_} as an equation af eondition.

Our p',r\o blem i3 to determine the most probable values of the
u ﬂlfllo'“"ns x, ¢ and z together with an assegsment of their precision.

) Y
) 2

6-02. Equations of condition in functional form

In some problems the equation of condition is of functional form.
X, ¥ and Z and the measured

BDenote the unknowns in this case by

quantity by [; then, the equation of condition for the i-th mcasure is
¢€(X? Y=Z}=Ez': (1)

Cambridge University Press,

W, M. Smart, Spherical 4stronomiy, 4th ed. {
p. 311 (formula {89)).

N\
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in whieh the function ¢, contains one or more constants, as i 601 (1),
sssociated with I,

In practice we can make progress as a rule only il (1) «an be con-
verted into a linear form, and this invelves deriving, as best we can,
approximate values of X, ¥ and Z which we denote by & Fyand Z,.
Writo . .

X=X+x, VY=¥,+ty, =2, +z,
where ¥, ¥ and z are assumed 1o be small quantilies wlose squares
and products can be neglected, By Taylor's theorem, (13 hoconéa

A T 2= b T 22 O (00 L (280 Oy
)H)‘-(JS, I’Z)_;}f(‘\ﬂ! }U! Zn}_;_x(fij;)o {_y(\eI")GTM(.EZ:"B_I'P (“)

The function ¢, being known, the values of (9 /e AN ets., can be
caleulated; denote these values b v o, b and e ang wrIte

n;= E!ﬁ - QJ):{XD 4 'YO ’ Zﬁ)
Then (2) becomes apebytbon= mz\\ {3)

4
which is the cquation of condition in Iix‘iu’:}r form.

To illustrate the reduction of an{ehuation of condition in fune-
tional form to Lhe linear form congid’;;sr the Hartmann-Corna formulat
which, in terms of the usual speckrdscopic notation, is

www.dbraulibrg{:?:orgm
Dilmg, e pdp; A Emn-;——c — ==/ (4)
8 (A — A7
AN
here my, cand A, a e<pl%te- constants’, » is an instrumental constant
which is supposed %qmm {for many instruments its value is cloze to
unity} and I, jg\a® meazured fquantity corresponding to a known
wavelength 2 The plate constants are the unknowns; write m,=X,
c=1Y and 327, then (4) becomes

N X, Y, 2 Ay =X+ — b g (5)
i XY Z A =X+ —— . ., 3
O PilX V. Z Ag=X A=z "

oI the simple case when p=1, the approximate values of X, ¥
<‘§nd Z are readily obtaincd from three equations with widely separated

values of A;; thus

¥ ¥ ¥
7 _ ~1 _ 6
X+AI—Z i, X+A2-Z L, X+A——3—Z s, (6)
from which
Fia,— (A — A,
Ll — (Aa—Ay) and Iy—ly=—. FiA,—A,) )

A—2)(h—7) =2y (4~ 2)°

t F. J. M. Stratton, Mon. Not. R. Astr, Soc. 71 (1911), 663; also, Astro-
nomical Physics (Methuen, 1923), p. 17.
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31_52_;(2_;{1 )‘3"%
Li—ly Az—A, A — 2
from which the approximate value Z, is found; the value Y, is then
found from one of the formulae (7) and, thereafter, the valuc X,

froen any one of the formulae (6).
From (5), with p=1, we have

' (6!X mh NT\Y), T A=y TNGE ], (=2

henee

i, =
£ 0
and wy=1;~ (Xo + ~Y°—,) . ¢ \:\
) NS ©
"he equation of condition is then given by (3). <~.”~ )

For a strict determination of the unknowns X+, ete/pthe tet of
couations {3) would be treated by the rigorous mebhods to be
described later in this chapter; in some practical prebloms, however,
the approximate solutions X4, ¥y, Z, arc taken asthédefinitive values
of the unknowns. x‘.\

The procedure just described can also belapplied advantageously
to linear equations of condition by seled{ing convenicnt values of
X,, ¥, and Z, close to the values obtaifed by a preliminary approxi-
matg- golution of three equat-iommaﬁgr;g}g}so l“tliicedure, w’hi(}h
greatly simplifies the subsequentnumerical work, T nlustrated in
§6-06. N\

A\
6+03. Equations of differe:

PAL

ent weights

When, for exampléjthe observational conditions vary thronghout
a series of measurds) measured quantity m, will be assigned a par-
ticular weight ik, Recording to the principles deseribed in the previeus
ehapter, We»x{-—i%e the corresponding equation of condition as

,s\ A§x+3§y+ciz:‘nf€: (l)

in thic-]sljfi now denotes the measured quantity.
"Hi %, y and z denote the frue values of the unknowns and (M) the
t}ic value of the measured guantity, then, aceurately,

A+ By +Cra= (). {2)
If —¢,, taken in the usual sense, denofes the error of M;, then
M, — (M= —¢,. Hence, from (2),
A,z + By + Ciz— M =e,. {3)
This is an accurate equation in which ¢; is, of course, unknown; the
welght is ;.
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PR
“According to the principle of least squares, the most, plausible values

QO
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By the principles of §5:06 the equation (3} is reduced to an CyHa-
tion of unit: weight by multiplying throughout by iy The equation
ol condition (1), beeomes

Nl Boy - e Oz = ey M,

which is of the form x-t by tez—=m; (4)

whena, is written for (%, .1,, .. and my for Ju, M, The last equation
i3 now of unit weight. £\

The best procedure in dealing with cquations of copaion of
different weights is, «f the oufset, to multiply each througiigiy by the
square root of the ecorresponding weight, therchy (Fyiucing the
original systemn of cquations of condition io ilie ;sy’st[;‘nf(d-} i1n which
each equation is of unit weight. e\

It is essential to nolice that an equation of "g{{: tlition (1) mugt not
be multiplied by any numerical factor othér$lin s for cxample,
if we multiply a particulsr cqnation (1), ef\sveight w,, arhitrarily by
2, we arc immediately assigning a ﬁc-tit-i(ghs weight 4, to that equa-
tion. Similarly, if we muliiply a p’a}ticular equation (4), of unit
weight, by 2, we are assigning a fi¢hitious weight 4 to that cyuation.

in the sequel it will be asstuned that the equations of condition, if
of unequal weights, have beenyeduced to equatious of equal, or unit,
weight. www . dbrauli b:{é'f'y_or‘g_ in

6-04. Normal equations

When the nufber of unknowns is three, the normal eguations are
three cquationdrom which the most probable valucs of the unlknowns
x, yand 2 argileulated. These equations will be derived, first, by the
principle §f¥east squares and, secondly. according to the concepts of

probubllity, ’
(iNE€t £, 9, £ be undetermined valuces of the unknowns and ¥, the
residuial defined by

Vi=a b+ b9 40l —m,.
of the unknowns arc such that S=XF?is & minimum, that is, that
S=2%{, 8+ b9+ e.f —m,)?
iz & minimum, Accordingly,
es_es as
A AT
The first, &8/85=0, gives

S fa E+Dy e, L—m) =0,
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or, in the Gaussian nolation,

flaa] + glab] 4 ac] ={am], (1
Similarly, 8Si6y=0 and 888 =0 give, respectively,
Elba]+ 5[bb]+ {[be] =[bim] {2)
and Eleal + yfeb] + Elecl =[em]. {3)
1t is evident that
[ba}=(ab], [cal=[ac], [eb]=[bel. O

The cquations (1), {2} and (3) are the normal equations from w hith
the most plausible values of the unknowns arc obtained [ (amy of
the usual methods of solving simultancous linear equ atlon If thesge
values are &y, ¥, and z;, then

wylaa] 4 yolab] + zfae] = wm],"
wafbal ol b] + be] = [om]al (5)
wolea] +yoleb] +zlee] <hm)

(i) The accurate form of an equatmn &b vondition of unit w eight is

&i¥+ b*v{;\t\ r’&br Pabear y.orgin (6}
where ¥, ¥ and 2z are the true & {ihuﬂ of the unknowns and ¢, is the
error associated with m,.

1f % is the wodulus of. Prcrision of the errors, the probability of
making an error hetw 1\0'—-— Lhand e, + $&, where Lis a small quantity
representing the dcg;g‘ of aceuracy of the measuring apparatus, is

hE .
- —exp{ — %P Th(.‘}probability, P, that all the errors occur is given by
[T £ D

p¥¢ ?

A\

) "\ P=Cexp{—hZe},
N bk
where, :\ C= ) ;
AN ‘\m
hencd, by (6},
\/ P=Cexp{—hZ(a;x+by+cz—m).

The most probable values of the unknowns arc those which make P

a maximum or which make F=3X(a,s4by+¢;2—m)? & minimum.
X &8

Then O _oE ok =0; taking first 520’ wo have

dr oy oz

Ta oz by +op—my) =0
or xlaa]+y[ab]+ z[uc] = [am]. )
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Similarly, 8Eidy =0 and 6670z =0 give, respectivel ¥,

2[be]+ y B3] 4 z[be ] — [bin | (8)

and apee] < yleh {4 xlee| =[], {9)

We refer to the group of equations (7), (31 and {9} as ¢ie normal

efquations the solutions of which are &, g, and Zp. Fhi zroup just

referred to is the sume as the group (1), {2) and (3) when £, y and { are

replaced by v, 4 and z, and as the group (3). ~

6:05, Checks in forming normal equations O\
In most, problents the formation of the normal equatfons mvolves
. . . . P N/ ot
cousiderable arithmetical caleulations, and it is theh emperalive to
PR 4
apply checks as the work procceds. AN 3
Lot 5; be deflined by @b b, + M=, 'M.\\’ (1)
Thug, for a particular equation the value o L) s Tea dily fiund. From
(1), by multiplving by «;, we have 9 N
4
“sﬂ-:"rﬂaba"i‘ﬂsf-‘-«;ﬂ'-'ﬂi\-;-”?;fo-a\*’s:
and hence, by summing, Y
R
[aa ]+ [ab]9ac] +{am] — [us). (2)
(as] is formedvatut Wb rawlibsnk wsgdn), ..., [am] are formed. Since all
the quantities on the left-Hand side of (2 all ocenr in the formation
of the first normal egb@tion, (2) affords a simple check on the work up
to this point, ¢\J
From (1} wepmin by a similar process

) [ba] + (6B 4 [Be] + [Bim] = [bs], (3)
\ ’ leaT+|eb]+ [ee] + [em]=cs], {4)
an Z"\~: ’ [ma]+ [mb]+ frne] + [#man] =[ms], (5}

Ehe'ﬁst identity (5) being a check on the calenlation of [#em] which is
required later,
,..\:
N/ 6-06. Example of deriving normal equations (Gauss)
To illustrate the process of deriving normal equations, wo take
Gauss's well-known set of four equations of condition in three
unknowns. The equations, of unit welght, are
X— Y+272= 3/
83X 42Y 57— .J

4X 4 }’+4Z:21,)
—X1+8¥4+3Z2=14.)
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Ii the first three equations are solved by any elementary method,

the resulty are . .
X=23% Y=3% Z=)&

It is easily seen that these values do not quite satisfy the fourth
equation,

As mentioned at the end of §6-02 the subsecquent arithmetical
work 15 gimplified by writing the equations in terms of approximate
valuzes of the unknewns; in this case, write

A
X=242 Y=3+y, Z=24z a
AN
and then the four equations of condition become N "
- y+22=0, :“:’5
3x+2y—52=3 ...'\"\“
\V (2)

4o+ y+4z=2, |
x4+ 3y+8z=1 o\
A\

The numbers, m;, on the right-hand sides of fht'se oquations are much
simpler than the numbers on the right- hand sides of the criginal
equations (1)in X, ¥ and Z, an advanﬁafrc in similar problems when
the values of m, have not the nweﬁé’!?ﬁ'ﬂﬁhﬁh@m QR ).

The four equations of condition, {2), are represented schematically
as follows, the correspondmg\v;ﬂueq of & {defined by 6-03 (1} being
given in the final column: ¢~

‘,l

@ b e m 8
o~ -1 2 0 2
O 3 2 — i 3 3 .
07 4 1 4 2 11 (A)
AN\ 3 3 1 6
\\

Fi?‘mi:’g’;:orml equation. Multiply cach of the equations, represented
ill'{xﬂ,\z‘throughou‘o by the appropriate coefficient of x, that is, by the
a}pr_"opri&te value of @ in the first column, the same operation being
applied to the last column of (A). The results are represented as
follows:

aa ab o am oL
1 -1 2 0 2
9 6 —-15 9 9

16 4 16 8 44 (B)
1 -3 -3 -1 —6

27 6 0 16 49

5C0O
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The sims of the several eolumns are given in the Jast row; thus,
leee] =27, [ab] =6, Jae]=0 and [am| = 16 also, (o] =19,

The work is checked up (o this point by noting that

2T+ G404 L6=40 — |ux),

inaccordance with G5 (2),

The first normal cquation is

2704 Gy = 163, N (3}

Second norinal equation. Mulliply cach of the rows in [ by the
appropriate value of &, The results are as follows (wempedmot fill
up the details in the first column since |ba]= [afi] = Gfresiy the work

in (B}, second column), .."\"5
&4
173 bl be b \‘z\‘
&
— 1 - 2 DANY -2
— 4~ MY s
— 1 L~ \ 2 11 (C)
— 9 AN 18
6 15 \F 11 33

The work is checked sinee G833+ 1411 =33 =[bs].
The SCCOH(TVIW)\;I'%% %%g%ﬁgf is &
N 6t iy pa=10. (4)
¢ \J
Wenote: _ &[Bbl=15, [bc]=1, |Bm]=11.

Third ?E-OF'ma:I"égua!fon. Multiply cach of the rows in (A) by the
appmpri@{;{yﬁi‘he of ¢, The results are as follows:

i"\;{' ea ch ec em cs
R D — - 4 0 4
RN - — 25 -15 -I5
~\J —  — 18 8 44 ()
A — =9 3 i8
0 1 54 - 4 b5i

We need not fill up the details in the first two columns since
feal=[ac]=0 from {B) and {¢h]=[bc]=1 from {(); there is the usual
check.

The third normal equation is

y+3da= 4 {5)

We note: [ce]=54, [em]=—4.
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Culeulation of [mm]. This quantity occurs in subsequent formulae
and it is convenient to evaluate it at this stage. Multiply each of
the rows in (A} by the appropriate value of m; we then have

e mh TRE R WS

- — — 0 w0

—_— - = 9 9

— - — 4 22 (E)

- — — 1 &

16 11 -4 14 37 O\
A=

We note: {mm]=14.
Since [maj=[am], etc., the sums in the first threc oolumns are
obtained at onee from {B), (C) and (D} respectively; thei'e‘i». the usual

chock.
Solutions, The three normal equations are: N\

, s

Uz+ by = 16, ’\’*‘
br+ 15y + 2= i (¥}
1/-{—542: —4,
The solutions, obtained by th”éf*fa’gﬂl?ﬁfé'rhi@h%ﬁ%ﬁpﬁﬁa’bﬂods, are
9,356 G0y 406 x 27 1,677 ,
gm0 —ﬁz. XS = (6)
19,8097 72T 737 19,899 19,899

or, in decimal notativn,

o, = O04T02, yo=0-5509, z,— —0-0843. (7

The mosi prfklz;a}ﬁ;a values of the unknowns in the original group of
equations,‘{i}'are

Y X=24702, 735500, Z=19157. (8)
6:07. Residuals

Tt iz assumed that the normal equations in § 6-04 have been solved,
the values obtained being denoted by &, ¥, and z,; thesc are the most

probable values of the unknowns.
Lorrmpondmg., to a particular equation of condition, the residual

o, I8 defined by By, + by Yo+ Cszo— . (1

Multiply (1} by a, and sum; then

[av] =xy[aa] + yolab]+ 2fac] —fum].
§-2
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Bui, by 6:04(3), the right-hand side vanishes; henee |ar| =0, Sinilar
results are obtained wlhen (1) is multiplicd by 6, and the sum taken,
and when (1) is multiplied hy ¢; und the sum taken. We have the

1 of results: . i
RIOMP ORGS0, [be] =0, [er]=0. 2
Again, multiply (1) by ¥, and sum: then

e =glav ]k golbel 4z ler] - omi,

or, by {(2), [te] = — [em]. (3)
Finally, multiply (1) by my and suni; then, by means [)I'"‘\‘;:{)\;
N\
=[]z [vnd = wolam| 5 yolbai ]+ 25 cn] *L}Nrﬁ] {4)

Sinee all the quantities on the right-hand sid'cz'of (41, o, Yo» Zoo
[um], ..., [man], are evaluated in the conrse di\deriving and solving
the normal equations, the caleulaiion of [nde] as in 6:06 (5 being
included, the sum of the squares of the tegdedlials, that is, [eed, can be
caleulated in one single operation. S

The individual residuals, #;, canmfoburse be caleulated by means
of (1] and then [zz| can be obtained “Whis procedure, in general, entails
heavier arithmetical work t:-ha;}.’iir the caleulation of [+] by (4); but
it has the adyan @yg,gu%%l}ﬁiﬁ%irpo light an exeeptionally la?'ge
residual, if such exists, thusStggestin g aserutiny of the corresponding
meastire in case some nitsiake has been made,

'i...‘\
6:08. Gauss’s éxaiiple (evaluation of [vy])

From the calulations in §6-06 it has been found that

\[m?z] =16, [m]=11, [em]=—4, [mm]=id;

§

\::}." oo 2886 406x27 1677
O *T19,809° T 708590 T T Tos60
'S By means of 6-07 (4) it is readily found that
/ 1,600
= 0-0804. {1}
[021=1g 599 = 0080

Alternatively, on writing p=1/19,809, the residual of the first equa-
tion in 6-06 (2) is given by

=Ly~ Yo+ 225~ 0= — 40060p,
Similarly, v,=—~1320p, = 1880p and o= —1400p.
From these, {ev]= 1800p =0-0804, as in (1).
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If, in any cxample, [#7] is caleulated only by means of the in-
dividual residuals, a check is afforded by one of the relations in
6:07 (2), say, [av]=0. In the present instance it is easily seen that

[av]=1.0,+ 3. v +d. 05— 1. 0,=0

6:09. Formal solution of the normal equations

We continue to deal with equations of condition in three unknowus,
For simplicity, in this case, the following notation is convenicnt:

[(m]:a’! [bb}ib, [C{J]=C; "\:\'

[be]=f, T[acl=g, [ebl=h; . O

[am] =M, [bm]l=HM,, [em]=M,, [mm]=M ‘ ™

In this notation a, b, ..., h arc in roman type to disﬂﬁ]\guish them
from g, b, ..., k in italic type, these latter referring%d'the constants
in the equations of condition. N

Since 2y, ¥, and 2, satisfy the normal equ{a..t'{:)ns we have, with the

new notation, azg+ hyu+gzu=M;‘3 (1)
hazy+ b&i%'ﬁf é})?gyﬁbrar‘y org.in )
2% + Tyock 0= ;. (3)

Let A be defined by "‘i“ a, h, g
ALY h, b, fL {4)

\\A' ; :

X ig el

Lot A, I and & Eéffﬁe co-factors of a, h and g in the first row of the
determinant; j:%xén"

(YA=be—12, H=fg—ch, G=fh-bg. {5)

N
Similazly, B=ca—gt C=ab—h? F=gh—af (6)
~&Y&lﬁw& the following well-known properties of the determinant:
’ ad +hH +gG=A, 0
hd +bH +{G=0, (8)
gd +1H +eld=0. (%)

The left-hand side of {7} is formed from the elements of the first
row and their corresponding co-factors; the left-hand sides of (8)
and (9) are formed from the elements of the second and third rows
and the co-factors of the elements of the first row.
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There are two other groups similar to the group (71, (8 and () and
formed ina similar way.

Multiply (1) by A, (2) by H and (3) by 7, and add. The coefficient
of @y i A, by (7); the coeflicienty of o and zg vanish, by (%) and (9);

then Ay AN, + HM,+ (23, (10)
Similarly, A= HI - BM, - FIIL,, (1i)
Ay = LM+ I M+ I, A12)
The solutions of the norimal equations are ziven by (10}, ('[ }\}prd (12}
From 6-07 (4) the sum of the squares of the 1‘osiduulz~;’,i§§1_|“ixer1 by
[ = M — g My — gy My— 2, 3, L\ bt (13)
In determinant notation 1he solutions of {1, [2},51&’1& (8 wre
h, o S LA A
Awg= b, T, |

My, Ag=SON, 0,
: f.- = ‘l-{{\ i ~“}\V £ ty ‘-ud :

ba, N P
Arg= BV b, 3, . (14)

www dhraulibraiy.org.in .

NV g L M

Hence (13) can he wrii;{cn
N a8, h g !

\J ,

\:\\_\ B _[ b A, . {15)
,'\;“ | & f, e, M, |
‘f\' My, M, M, M|
Ra(u"l\;ﬁing to (10) and replacing M, by [am), ete., we have
. ~§\ Ay = Alam]+ H[bm] + Qem]
x<“ =AZam;+ HEbm, 4+ GZe,m,
=Zmyfo, A +b,H +e,G).
Define ; hy Aw,=a; A +b,H tc, G (16)
then To= iy o, =[],

Similarly, defino £, and y, by
Afy=a, H+b,B+c, F (17)
and Avi=a,G+b, F e, (18)

then we obtain Yo= [ﬁm] and Zy= Lym]
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The formal solutions of the nermal equations in tcrms of the
suxiliary quantitics ¢, f and y are

ay=[am], yo=[{fm], z=[ym]. (19)

£+10. Properties of a, @ and v
(i) From 6-09(16),
Al =A{Aal+ Ha b, 4-Gac)
+H(Aab, +Hb2 4+ Gb,c,)
+ G Aa,c, + Hb,c,+Gc3; ) .\,\’Q>.
henee, on summing and remembering that [es] =a, elc., we hg}%e;
Aa] = A(ad +hH +46) A0
+ H(hA +bH +13) \,.:‘;\"
+G(gd T+ el NN

AY;
~Ad R4
by means of the relations 6-09 {7}, (8) andy (‘9:):’: Hence
AN
\[-.fa\,\?c\-{;d@:aulibrary,org,in
Similar] L\
L ariy, [ﬁﬁ]:ig: 7 "'A'

~N
(i) From 6-09 (186) an{iwf),
Ay, = A(Ha?+Bab + Fayc)

79 N/

P + H(Hab,+Bb?+ Fb,c;)

L0 £ G(Haye; 4+ By + Feb),
and hgqe'g§"; A¥af]=A(aH +hB+gF)
AN + H(hH +bB+{F)
\M}“ +G{gH +1B+-cF).

The coefficient of H in the second term is formed from the elements
of the second row of the determinant A and the corresponding co-
factors, and thus its value is A; the coefficients of 4 and (& are zero,

Hence H
[aﬂ] = A— .

F G
Similarly, (51 =5 [“7’]'__5'
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(i) Multiply 609 (16), namely,
Azp=a 4+ 0,0 ot
by a; and sum: then  Alax]=a.d 4+ hi7 +ul?

=&, by 6087

Henee [ex]=1,
Similarty, BA=1, [evi=1.
{iv} Maltiply (1) by b, and sinn; then <'
Alba}=hd +LH -+ 10, O
and hence (b]==0, Dby G-09 (%) »,§§
‘%
Similarly, lafl=lay]=(by]=[ex] = IF;QV\O
. _ N\
(v) Multiply (1} by », and sum: then \\
2,3
Alaw]= dlav] 4 H[g\ﬂcr
=1{}, b\ i@sﬂ"‘(
Similarly, [71] —«”"‘ [vr]=10.

www, dhbr aullbr@i y org.in
6-11. Summary of fo,rmﬁlde

&

4

\s

N\

[6-10

The principal frgr:;\llae derived in the preceding sections

erence,

colleeted herc fofs\i\Q

o\ 2= o], o= [fm],  za=[vm];
A\ ’\./’

:,\é“) [av] =[be]=[en]=
ij}il A (T
QO fm1=-,__\;, wA=5, =%
Qe
O T A 4 H.
Q¥ =5, o=, lap-2,

fra]=[b5T=[cy]=1;
[af]=[av1=[ba]=[by]=[cx] =[cf] =0;
fov]=[Av]=[yv]=0;

[vo]=[mm] -~z [am]— Yolbm] —z,[em].

are
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6+12. The formula p2= _M

The typical lincar equatlou of condition in three unknowns, ex-
preased aceurately in terms of the error ¢, associated with the meusured
quantity, ., is, by 604 (6),

@ otby ez —m=e,, (n

in which 2, y and z are the true values of the unknowns. The correa
sponding residual, #;, is given by

g+ 00+ 05y — =1, \‘Z‘Z}
in which %, ¥, and z, are the values obtained b) solnng thc Hormal
cquations. 3
(i) Multiply (1) and {2) by 2, and subtract, thcr} ’\
apx{x—wg) + 8oy —yp) Foonlz— ) =0 c —cx oy

By addition of all such equations we ob’tam {; Y

(i — ) [l + (g — o) [Box] + (z —&}) Tml [ae] —[a],
which becomes, by means of 6:11 (3 (’ﬁ)’aﬁud (7,
\ar‘\f{,wﬁzw:fgrrﬁyllbr ary.org.in (3)
Similarly, 3y yo--[ﬂ@J z—2p=[ye]. {4)
(iiy Multiply (1) by »; aﬁd sum; then
a«[a\bq\l—y bu]+ zfen] — [my] = [e2],
which becomes, bv@rl] {2),

Q¥ L] = —[ev]. (5)
}Iulti}{i]&.‘é) by v; and sum; then
O\ T 1k o] o Tonae] = T
R\ 2lav] +ylbrl+zoler]—[my] = [v],
axd “\N ' [1] = -=[m#],
\or by [vv]=[ez]. {6)

(ii1) Multlply (1) and (2) by €; and subtract; then sum; the result is
(z—zp) [ae] + (i — o) [be] +{z—2,) [ce] =Tee] —[ev].
By (3), (4) and (8) this last equation becomes
fee]=|ve] + [ag] [oee] +[be] [Fe]+ [ee] [yel. {7)

This is an equation which unites errors with residuals.
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Let 1 be the standard ervor of €yr oy ooy &,7 Lhen

L.,
pte=" e
7
or (o= np?

We ean now write (7) as
wpt=er] + 0+ R {(8)
where P=ae]{ae], @ and # being defined in a stilar wav. Nogw
P=(wye)tapent. +a,e,) {16 o0+t ; r\',\:\

=Xa o6+ Saasee; (ji. A W (9
S N

This ix an exact formula which is susceptible of fusidbr simplificalion
only if recourse is had to the general ideas of gohibikity,

Now, the errors ¢, , &; can be positive or NegNve and, eonsequently,
if nis large the double summation in (%) nyt S"be expected Lo be negli-
gible in comparison with the fivet summivation: otlierwise expressed,
the probable value of the double surinded ion is zero.

As regards the first summation, iz, 6%, the best estimate we can
make is (o take the probable or ngai*]' value of each of the quant tics ¢?;
this value fbru%i&?&'ﬁh‘uii"‘-bra,rfyfé}g. in

h.J*m PP _

- 2 wde or —, by 1-14(21),

VA L& 2h° v

L )
where % is the modaflu¥ associated with the errors. Since p?= 1j(2AY,
the probahle valage of the first summation in (9} is p?8m,00, = p¥ax]-
But, by 6-11 (&), Tao]=1; hence the probable value of P is u#% The
same result £olows for the probable values of § and of R.
Replchj;z’,“Q and £ in (8) by their probabie values; then

Ny

‘ ;\\ nut=[ow] + Ju2
R\ [20]
d 2" 10)
~O iy S (

As we have seen, the value of [#v] can be found by means of the
formula 6-11(R), or a!t-ernat-ively, by finding the value of each
residual by means of 607 (1}.

From (10} we obtain the standard error, p, associated with the
crrors in the measured quantities .

It is evident that the formuls (10) can be generalized when the
number of unknowns is k; then

[?J'b'] (-[ 1 )

pr=——

n—k"
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1t will be noticed that if =1 we obtain the formula for one unknown
derived in §4-05.

1f v denotes the probable error associated with the crrors in the
measured quantities m then, since r=0-6745x,

[20])
F=0-8745 I . 12
’ ! A/[n—kj (12)
when [ is the number of nnknowns.
N\

6:13. Precision of &g, yp and 2, OV

From 6-11 (1), ¢ ~\ ¢

xy=[am]=cym, +ogmy+ ...+, My,
l o ‘

As in the previous section, # is the modultus of premqtpn Jor the mea-
sures s which, it is to be remembered, are all of u{nﬁ\; eight,
Let H be the modulus of precision of g then by the theorem

of §3-07, _I +w+ +§E_[ﬁﬂ "
HE e R2 T '
Let g, be the standard crror of g 80 ‘that #2=1/(2H%); then, since

Kr=1/(2h%), (1) becomes N
www‘dbl aulibrary . org.in
. —-;L'Z[sc@j

%}xsg , by &11(3).

By analogy mth ;}i} 8) wo writo

p .7 zzﬁ2 .
e }.) fL w,’
(o A
'S M A ]
then '\\“ bV e {zz]’

N
acnd By is the weight of ;.
lence the precision of z,, which is represented by the standard

\eror ., 15 given by A ] }
1”’-‘2__.‘- - l(ﬂ,_—:})wx ’

AWy
The weights, w, and w,, of 4, and z, are defined in a similar way;

2)

they arc A 1
=5[]
A1

and wa=—E[_
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The standard errors, g, and u,, of ¥ and z, are given by foruulae
similar to (2),
The collected resnlts are:

__H A =M 3
Hp= s v My \.-"I'wy s M N E ( }
A A A
wng, W= W) 26
= /{7 "\\t:} {5)
M= ;—'—3J . O

(™S
If the precision of ,, for example, is expressed/dib térms of the
v
probable crror, »_, then . \:\'

N
A

\"
or ¥ *-OGASJ{ L-“‘jt [’ {4)

with similar formulae for r, and«x.
W dbrauhbl‘gl“‘y org.in

e =06T45u,=0-6745

614, Gauss's example\(precmmn of solutions)
From 6-06 (1), the 69;111'11 equations are

(\\:\ 2Tz + 6y = 18,
P\& 6r+15y+ 2= 11,
O\ ./ _
{\" ¥+5dz— —

The;d%&enmna-nt, A, is given by
™3

S
s g

\J : 273 65 0
<>w/ . ‘ 15, 1 .! 6: 1 |
A=: 68, 15, 1 |=27 -6|
: : C1, 54 L0, 54 |
0, 1, -
or A=19,809,
15, 1 | oy ! 9r
Alvo, A:‘ b f2n o z‘ 27, 6|
Co 0, 54| 6, 15

or A=809, B= 1458, (=360,
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The weights to be assigued to &g, ¥y, and z; ave given by
A . A A
:_-'1=Z=2-4-b, wyzﬁ_-lfi i wz:-(:r—53 & (1
.2_..3]]

W,
From 6-08 (1),
of condition is 4,

=0-0804; hence, since the number, n. of equations

#EE[L”]S =0-0804,
o=

trora which p=0-2835. (234
Then, p,=-" 0057, p,=0-077, p,=0-030. 3y
T AN -
The probable errors r,,, ete., are, numerically, (..’}"\"
7, =0:039, 7,=0052, -rz=0-026‘”"\’:} L@

The maost probable values of the unknowns X % and Z in the
equations of condition 6-06 (1) are given by 6‘305\(,8). The final solu-

tions are written (to 3 places of deeimals) \s

X=2470+ 00577 (NY

¥ =8-551 + 0-070 (5.7, (5)
71 UIGW:&%}:@ aulibrary.org.in
o= |- + S
in which the precision is exg"éssed in terms of standard error, or
X=8:470 + 0-039

N
Y =3-551+ 0052} (.., (6)

N z-1916+ 0026

o N/

in which t-hg*ﬁi'ecision is expressed in terms of probable error. .

In(® ‘&%’é’tanda-rd error of % is the least of the three, from which
it is in{érred that the detcrmination of Z is to be considered more
rclighl® than that of X and of Y.

“Tf'the four equations of condition in 6-06 (1) referred to the results
é‘rea-l observations, the smallness of the standard errors (or the prob-
able errors) given above suggest that the measures have been made
with a high degree of accuracy, so that considerable confidence can
be placed in the most probable values of the unknowns X, ¥ and Z
derived from the normal cguations.

The preceding caleulations, depending on the evaluation of deter-
minants, are easy and straightforward, due to the gimple cha,ract-f:r
of the coefficients in the normal equations; Ganss's example has, in
fact, becn chosen to illustrate general principles and procedure so
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that the arithmetical processes can be readily followed. The deter-
minant method is not, however, always the most suitable practical
method when the coefficients of x, y and 2 in the normal effuations
are such numbers as 27-53, 86-82, ete., or, generally, when the munber
of unknowns is greater than two. The normal equations have to he
solved in any event and Gauss’s method of solution with which we
dealin the next section Las the ad vantage of giving, withoutadditional
caleulation, the weights to be assigued to two of the unknowns while
the caleulation of the third weight is extremely simple, 2\

N

AV
6'15. Gauss’s method of solving the normal equapoﬂs and
evaluating the weights of the unknowns \ >

N,

The nornial Cqu.tlDIlR for three unknowns are,. hl ﬁw simpiitied

notation introduced in §6-09, K Y
ar +hy +ee= M, \4 {1
h.-r:-l-by—i-fz:,-'g&;\ (2)
gr 4 fy +c7~%sflfa, ()

where a=[aa], ete., M, =[am), E'd:(!
The first stages ¢ oi 1'::]1}] aﬁ}%@py Brg. the sucecssive eliminations of
x and .
(i} Elimination of x. I‘mm (1}

\ h g M .
N e ()
Substitute tlll%,CXpIBS%lOll for @ in (2); then

\ h? o
Yt -l+z[f—£l_ﬂa’ *].Lu )

\~ Y A Y

bub%tltutc for 2 in (3); then
...\ N

) ~en g g -
y{ a Jmlc iy I-_JI M. (6)

The eoefficients of y and z in (5) and (6] are to be evalunled as they are
written; for example, these cquations are nof to be “simplified’ by
multlpl\"mg throughout by a or hy any other number,

In Gauss’s notation the equations (3) and (6) are written as

yIbb1] +2[bel] = [Binl], (7)
ylbel]+2[ccl]=Teml], (8}
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where, in terms of the simplified nolation and Gauss’s bracket
notation,

[bbl]sb—-hsig:[bb]——[-ﬁb-}ﬂ, (9)
a a 127
_o gh_F o [ab]lac]
[bGIJZf_EZ Ca =1l fea] 1o
_ gt B [ar] fae]
Lc-cl]:c-—;:;-—[cc] raa] (1)
L ] [am] ;
1= Myt 3ty = o] -7, 12
, ] O
[em]] =M, —i My =T[om]- [-M[]w[ﬂm. " {:}& A1)
which arc all summarized in the single formula ' '\ (4 4
[ap]{ag] 04)

[pgli=Ipq] ~ ] RN

where  and g are any two of b, ¢ and =, 01;-})}:‘:}:6 or p=g=Cc, the
1 in the new Gaussian (triple) bracket beifiig Hssociated with the firat
letter, namely, . »,:g )

All of $he triple brackets are Svalditbauhibelis yousenof the arith-
metical work. O

In (%), {10} and (11}, it is to be Yemembered that €, ¥ and B arc the
usual co-factors of the detg‘n@mant

3

e hoe
N A=|h, b, £l

¢ \ / g f, ¢
The formulgv;{?or the triple brackets in terms of €, F, ete., will be
used whezithé weights of z, y and z are considercd. ‘
(il) Eldmination of y and caloulation of 2. We now deal with equa-

tiois{ﬂ and (8), From (7) bot] o]
@ 2 [bel o1] 5
\ Y= “zﬁ)b_l]—‘rﬁbl] . (15)

Substitute this expression for ¥ in (8); then

bel}? . [Bel][Bml]
z{[ccl]_%:’%}=[cm1]—_ {bb—]] 2, (16)

or, in the Gaugsian notation,
Z[ec2] =[em2], {n
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where [¢c2] is the wnsimplified coefficient of = given hy
[hel e

2A=[cel}——~=, 3]
fee2]=[col] G511 18}
and [em2] is written for the right-hand side of {16).
From (17}, the value of z is given by
5 .
e .[.cm_] : (19}
{cc2] ~
the numecrator and denominator are evaluated in the courge WE the
arithmetical work. Y

According to our previous notation the solution in {9 i desig-
nated z,; however, here and in the sequel it is sufﬁcie}lg}to"mfe1‘ to the
three values, obtained in the solution of the 110r1nal~e‘qu§ti¢jlls, simply
by &, ¥ and z. LV

{iii) Weight of 2. From (18), by means of (NI and (11),

B F! BCWE

o= _ 17 _ .
[ee2] a af el
but BO—F*=(ac—g?) (h>"h?) — (gh—af)* (20)
:aé . N .’:::‘
hence v dbra R gg;_;_jgf?-fn (213
or, from 8-13 (4)5 7 O I_CCQ] =, {22)

&)

Thus the \Veight]\@ , of z is derived, without additional calculation,
a8 a by-produgbof the process of elimination and solution.

(iv} Calcrlldtion of y and the weight of yy. From (8)

*'.\’": . [bel}  [eml],

E

& g g g BRI 2
N T ey el 29
‘&&&t-itute this expression for z in (7); then
...\‘;
AWV (LBl T (o] 24
V y[[bbl [Cc—l]] =lbm1) =~ L (24)
or y[BB2] = [bm2], (25)
in which [b62] = [Bb1]— .{b"”z, (26)
[eel]

[b52] being the unsimplified cocflicient of o in (24).
From (25) the value of y is obtained, the expression for [hm2] being
given by the right-hand side of (24)
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Now, from (26) and (9), (10) and (11},

. g KA
= ——== ¢ (20).
[B82] TTaE B by (20}
Thus [Bh2]=1w,, 27)

and its: value is obtained, without addifional caleulation, in the
process of solution,

(v) Caleulation of ® end w,. The value of x is obtained by direct
substitution of 4 and z by means of (25) and (19) in (4).

|

Since w,=AjA4, the weight, w,, can be caloulated directly by

evaluating the determinant and the co-fuctor 4. ¢\ )\
The determinant can bo readily evaluated in terms of quaitities’
found in the eourse of the preceding calenlations; thus ,,Q},‘ Y
AC ) D
A=— Za=w[bb]]a N
5 5 w=w[iol] o)
by means of (21), (22) and (9); hence N
wbbl]a _
mtzl-sz ] \® (28)

(be—12} ')

(vi) Derivation of the final -resu-lts.{'.lt‘}fe standard error, s, for the
cquations of condition of equal %?ﬁgﬁ%qﬁﬁiklpﬁ%f -org.n

aX ¢

. T ['3-"'”.-[
f“{ﬂ/ 173} 29)

and [##] is found, cith&\}a_;r'moans of the formula 6-11 (8) in which
%y, #p and z, are the vahues, as found above, representing the solutions
of the normal eglations or, alternatively, by calculating the in-
dividual 1'esidpsis? The results, in terms of standard errorg, for the
11111m0w.ns|<;[‘6/fh&11 expressed as follows:

A

A L
R =), (30)

RN 1 "
/A0S

AW N Wy N

7\ "/
o, i terms of probable errors,

; ” .
o Yo+ -—, Z 4 — P.E.), 31)
Tyt it s HoT Jw,” 0= Ny (#-2) (
[0 )
e =0 '-41"' [_ —_—,
where y=0-6745 l‘n~3J
300
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616, Gauss’s example (solution by Gauss’s method)

In this section Gauss's method, described in the previous section,
will be illustrated, using the normal equations derived in §6:08.

The equations of this section will be numbered to correspond with
the equations in §6-15.

The normal equations are:

27x+ Oy = 186, o
bu+16y+ == 11, O @
y+hdz=—4, ;:;;} T ®
(i} Elimination of x. From (1), “\,“
e Tar A @)

Substitute this expression for # in (2); the u\J
y15-4 }+z—11\~3°
or —y+2—§—~ (6} or (7)
Binee (3} is independent of ‘sr, “substitation by means of {4} is
unnecessary. wWe rewrite {?l”gl
www . dbraulibrary org.in

’g‘,!—!—a4z— —_d, {6} or (8)

Comparing these 1&*?? two equations with 6-15 (7} and (8), we have
the ldE‘I‘L‘tlﬁC&thl’f\\

bbl]—-—— ) [bbl] =1, [ecl]=54, [bml]=58L [eml]=—4. (4)
{ii) Elz@matwn of y and caleulation of z. From (5) or (7),
\j\" y=—rz+1rs- (15)
Suhhtltute this expression for ¥ in (6) or (8); then
~O o= a0
or 22, < 528 (17}
Hence r=ry= — gl = — D084, (19)

From (17) we have the identifications;

97 2811
[ec2]=2211

08, (18)

123

(itiy Weight of z. By 6:15(22) the weight of  is the coefficient of z
in 6-15(17), namely, [cc2]; hence

w_2211 539 (22)
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(iv) Calculation of y and the weight of y. From (8),
z= —gql — i
Substitute this expression for z in (7); then

Y s =% +o7

R
or iy =%
We have the identifications
po2] =57, [bm2]=28
Hence, from (25), Y=y, =528 =0-551.

By 6-15(27), the weight of y is [6b2] or H5; hence
wy=13-6.

131

(23)

- N
&

7\
N
« N\

T en

(v) €l culaiwn of x and the weight of x. Substitute iﬁ:{éf} the values

)
428 and — J28% for y and 2 rospectively; then )

7
= xo—lagsi:O‘iJ’U \\

‘,o

In 6-15 (28) we have the following Ta.]u&‘\'V

a=27, w,=2311, [bﬁl}—-‘a‘—i from(—\)

wwwdbr aulabr ary.or

1533 1
and hc—-fzz o - B :809.
1, 5
Henee \a'g{;v_":lg 525 = 24-6.
(vi) Hesulls, Frorg'ﬁ}, 4(2),
P\ 1=0-2835.

From (28), 2;}&«1 @2),

.%" w, =248, w, =136, an, =530,
From 6-1830),

O
O we= P _0057, =007, u=0039
4 A W

and from 6-15 (31},
#p= 06745, =0039, r,=0:052, 7, =0-026

All these results have been obtained previously in §6-14.

The final results, relating to the original equations of condition in

terms of X, ¥ and Z, are as given by 614 (5) and (6).
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6-17. Checks for Gauss’s method
(i) A typical equation of condition is
by e z=m.

In §6-05 we showed how checks on the formation of the normal
equations are undertaken by introducing a subsidiary cquantity s
defined by )
Y @+ b te +m =4 N

In the equations of condition a measured quantity m u,ﬂl\be given
in terms of some unit unrelated to the magnitudes of tf‘iv covfficients
a, b and ¢. To avoid complications in the computwtwm il is advisable
to choose a new wunit for m 50 that the 19%111t111g~11u111u ical values of
m are of the same order of magnitude as for & 5and ¢, all being ex-
pressed to the same number of decimal plaegsy

By 805(2), (3) and (4},

A
[aa]+[ab] +|ac] —,{mrﬂ—[a? {n
[ba]+ bbj—i—[br}—i—lbm]—[bs] {2)
[ea] +{cb]+fcc]+[rm]-{m] (3)

It is supposed, as in §§‘0‘6 “that [a‘s] [bs] and [es] are evaluated
in providing c}’{éc]'zndgha%? Faleh#Hi8n 'of the normal equations. We
write the normal e%uatmns with the addition of [ms], [bs], [cs] u8

follos: \\xkaa] +ylab]+zlac] =[am]; las], {#)
Ke x[bal+y[bbj+z[be]=[bm]; [bs], (3}
P\ zleal+yleb] +2eccl=[cm]; [es, (6)

w]ueh\c solved, in Gauss’s method as in §6-15 by the successive
elimyination of 2 and y, operating on [as] in the same way as on [ )

LonTbslas on [bm] and on [es] as on [em]; the process is in fact the same
~3as solving two sets of equations, first, with [em], cte., on the right-
" hand sides and, secondly, with [as], etc., on the right-hand sides, the

two solutions being carried ou side by side. For example, the elimina-
tion of  between (1) and (2) results in 6-15 (5) or (7}, namely,

y[Bb1]+2[bel]=[bm1]; [bsl],
in which all the triple brackets are evaluated,
Now, by 6:15(9}, (10) and (12),
[561] +{bel] + [bml ] = [Bb] +{Bc] 1+ [Bm] — = {[m.’ﬂ +[aee] 4 [am]}

=[hs]— ab]—[—j{[aa] [aal},
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v means of (2) and (1). The right-hand side is thus

[ba] [as]
TbS] —-—W [1)81].
Hence [BB1] 4 [hel]+{bml]=T[hs1], (7}

which provides the check up to this point. Similarly,
1Bel]+[eel] 4 [eml]=[es1], {8)

which provides the choek on 6-15 (8). O
Again, from 6:15(18}, A ¢
_ [bel] R,
[ee2] -+ [em2] =[oel]+{oml] — == {[bel]+[bm13} O
[Bb11 \
=[esl]—[bel] _[od] [bs1]—[bB1Y}, fro '(é)\ a;d (7)
¢ [501] WA
bel][Bsl \
=[cs]]_[_m m ! N
b61]
~es3), )
by the analogue of 6:15 (18). \

Thus a check i provided for the g@nﬁéﬁcal quantities in 6-15{17).

(i3} If the individual residuals @i.réb%algqgitgfiy ,gpgqﬂ [vr] is cal-
culated and thisshould agree Wit-h.%he value of [vv] obtained by means
of the formula 6-11(8), na-m%g(,

o] =g alam] — o] — e

Alternatively, thé belation [2v]=0 in 6:11(2) may be used for
checking the residuals. )

(i) Applicativn to Gauss’s eenmple. The pseudo-normal equations,
in terms 0%}}&'0 obtained as follows:

from GUB(1),  s=2T+ 6+16  =49;
,f{ﬁﬁj%-lfi(?-), 5= 6415+ 1+11=3%;
Nefom 616(3),  sp= 1+54— 4 =5l
The pscudo-normal equations are
Wt by =49, )
6+ 1oy + 2=33, (10)
y 4 5dz=5.
From (), w=—2y+%55,
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and substitution in (10) gives

y(15—%) 4233428

or ~—~y+z=—. (113
Compare (11) with 6:16 (5) in which [bm1]= 5% thus, {rom (11,
[bs1]=132, (12)
Now, from (4) in §6-16 (i), A\
[(BB1]+{bcl)+ [bml]=4L + 1 4 87 =152 A
=[bsl], by (12}, \\, -

Thus, the check given by (7) shows that the u-'ork«isf@rrect up to
this point, ¢ ’
The remaining checks are applied in a similag “\x\}

6-18. Alternative method of calculating}u‘reights

We consider the normal equo.tlons \n‘ §6:15; by 6:08(10} the
solution for  is given by e\

4 KN @
A, B+ S,
Ty M

Now w,=AjA; “Ti’é‘fié%-bi?"t{@j“%ﬁ&p‘t&é“normal equations, in which
we put J\i}_l My=0, M,=0

we obtain a valu iv’hmh is equal to 1jw,, The method can clearly
be applied to the evaluation of w, and w,, each requiring a separate
solution of thrce quasi-normal equahons Further, the normal cqua-
tions and :the guasi-normal equations can be solved in any way
we plea; 0.\

To 1lustrate the caleulation of w, in (Gauss’s example, we have
the f’&ee guasi-normal equations

.\' 2Tx+ By =1, (1}
~O
N/ br+15y+ 2=0, )
y+54z=0. (3)
Eliminate z between (2) and (3); then
8242 +809y =0. (4)

From (1) and (4) it is casily found that x=1808/19899, so that

ag found in 6-14(1).
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6-19. Equations of condition in two unknowns

As this ease is of frequent oceurrence, the formal solutions will be
given, followed in the next section by a numerical example relating
to the photographic determination of the parallax of a star.

A typical equation of condition is

a;xby=m; (i=1,2,..,n).
The normal equations, formed in the usual way, are

afaa] +ylab) =[am),

x[ba]+ylbd]=[bm], O\
which are written for convenicnce as A O '
ar+hy=M, R ":'«: (1
he +by=H, R )

where a—[za], h=[ab], b=[bb], M,=lam], \Ms=[bm].
Let A denote the determinant given by x:\\“
1 a, h ‘. "..}\ W

5=n, b,
then, the solutions of (1) and (2) arc fc;,yn given by
A= I}\;ﬁ;‘»ﬁ_‘%ﬁ,}ét} library.org.in (3)
Ayd=al,—hH,. (4)

AN _

1f w, and w, are the respective weights of the solutions x; and ¥,

then, ag in §6-18, 1,,.-'%}She value 2 obtained by solving (1) and FQ)

when M, is replaced'by 1 and M, is replaced by 0. From (3), 2" =bj4;
A/

hence \ wy= /b,
Similarly; :\’ w,=Afa,
The {51r'_}§ula for [ov] is
p ..\'r‘:; [av]= [mm]— Eolam]— aolbm].

N;\o:%he standard error, g, associated with the equations of condition

is given, by 6-12(11}, by [ve]
ﬂ =m.u

If y,, p1, denote the standard errors of the unknowns, then

=l

with a similar equation for p,.



NN

N\

136 Equations of Condition [6-19

The final results are written, fivst, in terms of standard crrors, as

2
w=wokfe, Y=Yy (SE,
and, secondly, in terms of probable errors, r, and 7, as

w=wgkry, ¥=wyytr, [(P.E.),

) PR Y B 2 I
where 7= 007404, =0-6745 -9 :
e (r=2)u] O
with a similar formula for r,.
,\:\'
6:20, Example (two unknowns) O

As stated in §6:01 the practical problem of détehmining the
parallax, I, of a star from measures made on pajr&(f photographic
plates involves cquations of eondition of the Tohiny

by=m, )
axr-+oy=1m x1\\“

inwhich x and y are written for IT and g ﬁ}eﬁectively, mis a neasured
quantity, and & and & are known nungei¢al constants for a particular
pair of plates, o\ o
The details, which follow, reférito the measurest on six pairs of
plates for the stas hitamBBFirtorg are thus six equations of con-
dition. The quantities a, b #nd m are given in Table 13, the latter in
terms of & unit to be referred to later; & and y will first e found in
terms of this unit, I£'Will be observed that a, & and m are all of a
similar magnitudcieach being given to two places of decimals. Table 13
also includes the\yalues of the quantity s=a+ b6 +m, introduced for
the purposefeiiecking the arithmetical work in deriving the normal
equations; inthe last two columns are the values of the residuals, »,
and of y23¢hich will be used in the subsequent caleulations. Tables 14
and. Ke{int-&iu the caleulations of iral], ete., and Table 16 contaivs
t-h;i.f(:a culation of [#wm] which, carricd to an sdditional place of
Aeeimals, will be required later.
\ + 1t is seen that the work in Tables 14-16 is checked; in Table 14,
for example,
fau] + [@d] +[am] =|as].

¥rom Tables 14 and 15, the normal equations are
13-d440 4 1-676y= 4731, (N
16762+ 1-782y = — 2.275, (2)

T A, van Moanen, Contributions of the Mt. Wilson S

( W vlar Observatory, no. 111
19159, 7.
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Table 13
i3 b W 8 o o
150 — 32 +1-53 2-71 — 0079 0-00624
150 — 32 +1-3¢4 | 232 +0111 0-01232
1-50 —0-82 +1-50 ' 268 — 0049 0-00240
142 +0-73 —G-48 - 1-67 —0-027 0-00073
1-64 1-0-64 —031 1 17 1-0-094 0-008%4
1-41 +0-78 —045 © 1-69 —0-063 0-00397
807 +1-14 +3-13 ¢ 1324 — 0-03450
t\\
(N
Table 14 {g\ "
i ab . a‘s: “"\‘”’, .
2.250 — 0480 +2-205 4,068
2.250 — (480 £+ 2:010 ADT80
2950 — -480 +2-250 \'\-020
2016 31087 _ens2z | \v237
2690 +1-050 —0-503.:1‘} 3-231
1-088 +1-029 —0»634&‘ 2.383
13-444 +1:676 +4g'73'f} 19-850
‘Q:‘ o
‘::“\‘
o -
Tgﬁ-{éﬂ?]gﬂn‘aulibrar‘y_m'g_in
bt b b b
— @02 — 0490 — 0867
— i,\\b-loz —0-429 —0-806
— S Vo102 — 0480 - -858
— N> 0533 —0-350 +1:219
— 2N 0-410 — 0198 +1-261
7‘\" 0-533 — 0328 +1.234
\ﬁwo 1782 —2-275 +1-183
No/
Q
e
O N Table 16
I“\ W
\/ e b R A
— — 2-3400 +4-146
_ - 1-7956 +3377
- — 22500 +4-020
_ — 0-2304 — 0802
_ — 0-0961 — 811
— _ 0-2025 — 0760
4-731 — 2275 69155 +9-370
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The solutions of equations (1), (2) for @, and y,, can be cifected in
a variety of ways. For simplicity in formal presentation we use the
determinant method. Here

13444, 1676 |

= 1476, 1782 |TENIS
then Arg=4-731 x 1782 +2-275 x 1-676,
and A= —13-444 x 2275 — 1-676 x 4-73], O\
from which 2y=0-579, y,= —I1-821, O 3

The residuals, », can then be caleulated by means of ‘Q}lé.;?ﬂfﬁnula-

N
v=aiy + by, —m; \ ?

the values of » and of +? are given in Table 13, fq‘?)étxﬁ'hieh
[00]=0:0345. N (4)
[vz] can also be calenlated by means Qf’éhé’formula B-07 (4}, namely,
[ov] ={mm) — @y}~ yolbm]
- 6-915;%’¥-ﬁ31 %o+ 2-275y,
from the data im%biﬂ&hﬁlih%dc-l‘&, iThus
(8 (o) —0-0340. (5)

¢ \J .
The difference betweeR the valucs in (4) and (5) is due to the curtail-
ment of the numdhers of decimal places in the various calculations.
We use (41\'%;3"caleula-t-e the standard error, u, of the measured

quantitieg,\:mt Applying the formula g = J { [vw] j
~& P
(the namber of equations of condition) and k=2 (the number of
unkhowns), we obtain
y N v 0.03 45
~O p= J [—-4—"’}:0-0929. (6)

N

, in which n=6

From 6-13(4), the weights w, and w, of the unknowns are A/A
and A/B, where 4 and B are the co-factors of [aa} and [b&] respectively
in the determinant; from (1) and (2),

[ea]=13-444, [bb]= 1:782;
hence 4=1782 and B=13-444 so that

At 211
*~ 1782 R TVYE
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The standard errors, p, and g, , of the unknowns are

£ A
ol a £
N = Jw,’
hense fo=00270, g, =0-0740.

The probable errors, r, and #,, of the unknowns are then
r,=00182, r, =0-0409.

\We write the solutions in terms of probable error and in terms of QO

the unit of meazurement as £ b
zo= (5791 0:0182 O
{p.E.}. L
3y, = — 1:821 £ 0-0499 N

The unit of measurement is equivalent to 0"-1649, ’L}'@*ﬁn&l results
in ferms of probable error, are, to three decimal places,

M=x,= 07096+07003) (ﬁ\j
Yy =g — 07300 £ 0"008fN
6-21. Equations of condition Wj'ﬁ!l’ thore than three unknowns
(Gauss’s method) \,gt,-fw?\ff'dbraulibrary.OI‘g.in
The procedure of dealing withn equations of condition with more
than three unknowns will gehdicated in outline, taking the case of
five unknowns which azd.denoted by z, , 2, u aud ». The equations
of condition, for whiph\(a\> 5, are
, ..55;:’:519' Foyzdyu ey =y P8
T e
(NY e by ot U teg =1, | Sy
QX
with (fhe auxiliary quantities 8, =a,+b;+¢; +dy+e +my, ete,
displayed on the right-hand side. The normal equations are formed
«'{1\ ¥He usual way; they aro
afaa] +ylab] +2[aci+ ufad] 4 vlae] =[am] | [as]
w{ba] +yibb] + 2[be] +u(bd] +v(be] =[bm] | [bs]

with the nanal checks

[aa] 4 [ab]+ [ac] + [ad) +{ae] + [am]=[as], ebe.
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For convenience the normal equations are written as

M Fapytagz+agutae=0W,, {1

biedbyy+hsz+byu+bu=, {2

e+ i + a2+ Oy 1+ ot — M {3)

dix+dyy +daz+du+dyu=0,, ‘\{4)

eyt ey epz Fogu+ogr =1, O\ (5
where a={aa], ay=[ab], ete, and M, =[om], etcz\:\ "

We shall suppose for the moment that the normal equ;it-ii:‘i'ts have been
solved, the values obtained being #,, gy, 2y, %, and #. As regards the
precision of these solutions we require to find ] and the weights
Wy Wy vo., Wy t0 be assigned to o, ¥,, cte. The numerical value of
{#] can be found either by calculating fthésvalues of the individual
residuals, »;, from the typical cqllat-ior;\ of condition by means of
the formnla )
@+ 000+ €z H g+ e v —my =1,

or, alternatively, by means c&'*tho formula, given by 6-07(4) and
generalized for ﬁmﬁ@ﬂl‘m%ﬂry,org,in

[vv] = [ ] ANy vy — M,y — Mzg— M, ty— M ay.

If # is the stam}‘s\}d error of the measures m,, m,, ..., ., , then

\&" 2. 171 (6)
y t\' . h—o

Thielstandard error of g, for example, is then g/\w, for which
w,Ba%'to be evaluated b ¥ 50me process. '
~ods the amount of culeulation is considcrable the solution of the
Jormal cquations is not to he undertaken lightly if cconomy in the
numerical work of calculating the weights is 1o be kept in mind.
There are two cases to be considered. In the first, the objeet of the
investigation is the derivation of the most probable values of ll the
unknowns together with their standard or probable errors, the
evaluation of cach unknown being regarded as equally important
from the point of view of the extension of precisc knowledge relating
to these quantities. In the second case, the object of the investigution
consists primarily in deriving the values of, say, two unknowns with
their standard or probable errors, alth ough the equations of condition
contain other unknowns whose values and precision are eventually
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of no particular interest; for example, in $86:01 and 6-20 the equations
of condition involve two unknowns I1 (=7} and g, (=y) and ib iz the
principal object of the investigation to determine the parallax, II,
of the star together with its measurs of precision, the value of g,
and its precision being of sccondary interest.

We deal with the second case first, reflecting that it is essential, if
the arithmetical work is to be reduced to a minimum, that the
normal equations should be solved by some systematic procedurc
siich as Ganss's. It is convenient to arrange the equations of con-
dition and the normal equations in such a way that in the group
{1}—(5), # and » are the two unknownas whose measures of precision ge,
to be found; in Gauss’s method we climinate 2, ¥ and z successivelyy
phtaining eventually two equations in u and © from which the ¥alues
of w and v and their weights can be obtained with the rgiﬁif%nun of
effort. Thus we write (1) as L& /

a7 8y 8y 8 MV
and substitute this expression for z in eath)}the remaining normal
equations, caleulating, for cxample, zt-ho' ‘unsimplified’ quantity

hg— E-L—a-b—l) which is the coefficient oﬁy’iﬁ the second normal equation
ay w{n?w_ﬂbl'aulibr‘ ry.arg.in.
(2) when the above substitution® of x is mader 1B this way four
sguations in g, 7, 4 and v apd dbblained. The next step is to eliminate
¥ by a similar proc-edurtgi‘l?tc elimination of ¢ then follows resulling
in two equations of bh%\’fofms:
2, Au+Av=DL, {7)
AS
o Cu+ D=, ®)
'S " .
in whichk{; B, ..., (g arc ‘ungimplified’ quantities whoge numerical
valuey appear in the courso of the calonlations.

om0, B P
\V mETATTD

and substibution in (8) gives

BC PC

from, which » is obtained; further, the cocflicient of v is the weight w, .
From (8}, ¢ 9

B= -——D'u-f'ﬁs
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and substitution in (7) gives

, BO\ . B@.
11(A~--bc)—.P- Do

# is then found and the coefficient of u in the last equation is the
weight w,,. It must be emphasized that throughout the various sleps
in the eliminations the coeflicients of the outstanding unknowns gre
not to be ‘simplified’ by the multiplieation of any factor, holgger
attractive such a proceeding may appear. SO\
Onece « and v and their weights have heen obtained tho\vmu&s of
the outstanding unknowns, z, ¥ and z, ean be found inahy suitable
way; their weights are not required, as the whole §ithrest in the
solution is deriving the values of # and » and theigd@ights. The next
step is to caleulate [wv] by cither of the twdNilethods mentioned
earlier; then, by (6), # is found. The results inhich the investigator

ie really intercsted are: x’\\'
AN\
uoiﬁi, e..'oi«.fi&.‘(SE).
[ty Wy

In terms of probable errors, the ﬁeéﬁlt-s arc

R TR A U )
& Sad s o Wy

where r=0-6745. ‘\

When all the val\és 6f the unknowns and their measures of precision

are the concern 8f the investigator, the procedure is first to find w,, ¥,

and their weigh‘m by the climination proecess just described. Then

xg, e and @z 2, are found by the successive elimination of u, 7 and z.

Fin&lly',“gn, %o and 7w, w, are obtained by the successive elimination

of %, nand ¥, part of the work being the same as in the second series

of e}i}lma-tion; the values of , and w,, obtsined in the sccond and

) third series should, of course, be the same., The work is checked

~\\iiroughout by the operations performed on the auxiliary quantities
781, 835 eeu, Sg.

6:22. Other methods of solution

(i) .The s?lution of the normal equations 6-2] (1)—(5} can clearly
be effected in terms of determinantz—a methodt advocated in some

quarters as being superior, in ecertain circumstances, to Gauss’s
method.

T E.g., E. T. Whittaker and G. Robinson, The Coalewlus of Observations
(Blackis, 1924), p. 239, §121,
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Consider the normal equations just refexred to. Let A be the
determinant defined by

ay, &y, g, 8y, a5 !
. bl’ ba: ba) b.p b5 :
A=.e, €3 O35 G O

|d1’ dy, dy, dgs ds |

: 8, €3, €3, € &
and let 4y, Ay, ..., By, Byy s By By, ooy be the co-factors, 6f)°
g, gy very Bys Dy ooy €, 6. Multiply 621 (1) by A,, (2) by By
(5) by &,; then, by addition, ~ ™

wlag A, +b, By +... +01E1}+y(agA1+b231+.-.+62£)'i1;i- ‘
+o{agd, +h By + . a k8 EY)
= A, M, B, My+ ..ok 8 M. 1
By the properties of determinants (see §6'0€}\) ;
8,4, +by Byt ... f?f?f; A
a,4;+byB, {wzﬁﬁpﬁ@hﬁgi y.org.in (2}

N
............... R L R

&5A1+b<31+ worbes By =0
Hence, if x, denotes the\sfqgm‘tbion (1), then
.ﬁgfﬂjf.(‘llﬂfl-f'-glMg‘i'-“+E1‘Mrb‘ (3)

Further, as in §6- 13,} the weight, w,, of 2, is given as | w%lerc z %s
the correspondi g solution of the normal equations in which 3, is
replaced Land M,, M,, 3, and M, are each replaced by 0. Thus,
from (3),'A%" = 4, so that A
w\: :\;’3 Wy = x:Tl .

/ .
I}bre A, is the fourth-order determinant given by

ibz’ baa b4= ba

Dy, ees s O
A= a

i dE) arey T EY 5 |

H |

| €5 rer ers 5 |

say p, can be readily reduced to

Now, a determinant of any order,
lications of the procedure to

one of order p—1 and by successive app

N
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one of third order and to one of the second order, the last being easily
evaluated. To illustrate the procedure iu o stinple case, conzider the
determinant of third order, D, given by

| Ty, Wy | L owaidy, wgiry
D=y, ¥ U !E-‘t-‘lyl 2 Lo win
; Zya Tmy 2 . L= '
i1, oy, N
or D:xiylz[i O, ¥alyy — 20l
i O, zpiz—usie,
hence D=l5 =Ty, T Yy — Tl I{‘:ﬁ;

Ty | T rp—Tey, 2y —x3,3:1j\ \

In the case of A, two successive a-p[::lir_:a\t-iGB\S of the aliove pro-
cedure redace A to & third-order determinab®and a further applica-
tion to one of second order which can bexgddily evaluated,

In theory the method outlined ig sl\a1ghtf'or\\ ard and in practice

is comparatively easy of applicatioh when the coeflicients @, b, ... in
the normal equations are small\ positive or negative 1|1Lcwe1~<—ir)1”
then the various determinangssd,, B, ... are veadily reduced 1o

caleulable forms—o “h(f onTx the evaluation of one or two of the
unknowns ( 009 (—"T‘ Wit Dl% Stffdard er rors) iy regarded as the
real object of thc 1n\7e~1‘r1frat10n However, it is mrel\ the case that
in actual problems “the coefficients t, B, ... in the normal eguations
are small positi kg\or negative integers and, accordingly, the method
becomes onesef comsiderable computational complexity; in such
cases the s?istcmatm procedure of Ganss's method of solution i3 to
be preferze

Or}e\z{%’advaﬂltage of the determinant method is that such checks

%? possible come only after a considerable amaunt of computation

Jas been performed; if the checks fail there is nothing for it but to
repea,t the calculatmm up to this point.

) (i) A method involving matrix theory and deseribing the com-
putation of determm&ntb and the solution of linear equations has
been given by 1. Banachicwicz in Aeta Astroromiern {Cracavie),
Ser, . 3,41-72, to which further reference may be made by the reader.

6:23. Evaluation of the unknowns in equations of condition
connected by rigorous equations

As a particular case consider » equations of condition in five un-
knowns x, ¥, z, % and v

axtbyteerdutev=m; (i=1,2, ..., ), {1)
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the unknowns being conneeted by two rigorous equations

G,y 2 u,w) =0 @)
and dofz, y, 2z, 4, v) =10 (3

We shall assume that the weight of (1) i3 4.
Now (2) and (3) are two equations which, theoretically, can be
solved civing  and v each as functions of the three independent

vaviabiles z, ¥ and 2. These solutions can be written symbolically as
w=ulx,y,2), v=e(EY.2h ()

N

AN

When, in (1), » and v arc eliminated by means of {4), the cquations®
of condition are then expressed in terms of the three hldgapa;lfdént
unknowns x, ¥ and = A\ 3

If ¢, and ¢, arc lincar functions of #, 4, .-., v, then El‘{e&équa-tions
of condition are, after elimination of # and w, linearttin «, ¥ and z;
the novmal equations can then be formed in the ustal ‘way and their
solution gives the most probable values of x, ¢ a0 %; the most pro b-
able values of » and » are then obtained by m‘%‘ﬁé of (4).

Even when ¢, and ¢, are linear, the elimigiation of # and v from each
of the » cquations (1) i# a (:umbmus‘]sfgcéss. Instead, we consider
the general problem when, ab ﬁrs@:@ﬁbﬁdlﬂiﬁfmP%Pg%nnoce%&rily
linear. o\

Reduced to unit weight a typi‘c’fscloequat-ion of condition hecomes

S (e i&-ﬁ}; e T =

If 2, 4, ..., # now derbte the most probable values of the unknowns
the sum of the squédes of the residuals s

f\”;,\if;’—:'E-w%-(aix—{—... ot v — ) (3)

Tf B’ detighes this expression when #= wlz, y, z) and v=v{2, ¥, z; are
511bst5\f:-{1’6fcd, E' is thon a function of the three independent quar.mtlcs
armaud z. The conditions for the sum of the squares of the residuals

t}\'béa,minimum are e oF
aF el ok —0
Tx oy 2
o 6E GE o

&F &
fr  fx ou dw Ovim

0 {6)

Now
by the first condition. There are two similar formulae in terms of
4 and z.

sCO
I0

N
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Similarly, from (2) and (3) when (4) are substituted, we have

Oty i, du O, Fr
Guylnle Gl (7)
dr oy S odr

Che O, B 0, &
and o 00 +¢ =0 (8)
de  du Gz Sy O

Multiply (7) by A, and (8} by A,, and add these results tu (1. Then

a8 & &g, ufOE aeh fedy|
,-_J Al_r¢1+32¢2+n_ by '+f11 ,.r l+/13 ¢2) e
dx o X or\ou cu Ct 2 AN

Go (68 & A

+ia ( n P o )

e\ Cor U O <2

There are two similar equations in terms of y andz, the cocfficients

of du;Py and Sv/ey, of Euftz and Beéz, being\lhasame as in (9).
Suppose that A, and A, are such that the ebetlicients of Su;ée and

dejGx In (9) are zero; then we have th’ group of cquations, five in

nurnber, ol 8y N,
oA = =0,
dx Gy ¢ o

aW.d’!‘gzirg =0,

www.d b@l@) L (10)
% % TR

These, tiqgéfﬁér with the two equations froin (2) and (3), namely,
9, =0 andds =0, are seven couations from which the seven unknowns
x, y\z;;"‘q;}v and A, A, can be found. In (10), éEjox, ete., are {ound

at puoefrom (5); Lhus, for example,
RN\ 10 ;
~O 3 wfwaa] +ylwab]+ ... + v[wae] — [wam].
) 3

N\

It is clear that the procedure can be generalived for & unknowns
connected by p (p < k) rigorous equations; the number of independent
unknowns is & —p, and for the principle of least squares to be applic-
?ble the number, %, of equations of conditions must be greater than
t—p.

The simplest case occurs when each of the functions ¢ is a linear
fanetion of the unknowns; then the equations (10) arc lincar in =z, ¥,
..., vand in A;, A;; the elimination of A, and A, leaves five linear cqua-
tions in the five unknowns from which the values of the nnknowns are
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obtuined. The simple problem in §6-24, involving three unknowns
and onc rigorous linear equation, illustrates the general method of
solution, togother with an assessment of the precision ofthe unknowns.
When at least one of the ¢’s is non-linear the general method
involves solutions of complicated equations; the difficultics are
avoided if approximate values of the unknowns can be obtained by
any means, for then each ¢ can be reduced to a linear equation by the
application of Taylor’s theorem for the expansion of a funetion. The
procedure is iHustrated in §6-24 {ii).
624, [lustrative examples \ \J)
(i), To find the mostprobuble values of the angles ¢, y and z of atridngle
frow measures 2, [} and y respectively. N
In this sirople problem the equations of condition are\’ (4,

w—a=0, y—p=0, z—y=0
with the Euclidean condition , \\

W

b=z +y+z—ma0) )

If the weights of «, £ and y are wy, Wy and w, then, from 6-23 (10),
the most probable values of the unkhowns are given by
’ S dbraulibrary org.in

g @)

)
with two similar equat@lﬁ’ln y and z, where

Bz — o) gy — B +wsle =) 3)
O 2p 8¢ 8¢
BT - 7 e == 1:
Now, fr(?IQ}t}), Gr oy &z
he-l‘me,,@)\becomes w (s —a)+ 4= 0.
01\0"}1 ;:Friting Ay = —2A for simplicity,
’ A
251
e . A _ : A_
Similarly, y=p +,;2’ Z-—')"f,ws-

Substitute these in (); then

111
a+ﬂ+’}’+)t(—'+—+“ =7,
Wy

wy Wy

-2
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from which, on writing U =w, wy fw,w, +oeyw
A={m— Lx—|—/f+~f)} f—‘?’

Substitution of this expression in (4} sives

_ w{y —]— trg) ()
v N\
This cxpression for @ gives the most probable value of the dugle
whose measure is o. Q8 \
If the measure « is the result of a serics of individual 4 \11 asures of
unit weight so that #, is the probable error of &, the p}t‘)[‘{l}lli error of
measures of unit weight being r, then

+&4
N
, AN
e 7 v
rE=—,
1w
1 p \}
Similarly, the probable errors 7z and Iy ‘&f‘thp measures 5 and y are
given by AV,
, 7 {H%e
PRl DL
# a7

r.‘ WYy

s"

From (3}, on & t mardl theorcm of §4:14, the probable
erTOr of x, denc\}'f (l'y by v, Eibgﬁ‘ Oﬁ&

N\
2
=1 2\(31).,—1-1{,) T g u:3(r2—-r
NN o et Ty pEnh

which, on redurotibn becomes,
N \ /

: ) e
7 o et W) ®)
\‘ o

Thexﬁmbable errors of ¢ and z are given by analogous formulae.
T4 15 to be remarked that in this simple an,mple E can be expressed,

B\ —\y means of (1), in terms of two independent var iables; thus we have,
\/ by eliminating z between (1) and (3,

B =wi(m—altuw,(y— ) +wyle +y+y—m),

and the conditions, 8E'/x=0 and 6K ¢y =10, for the most probable
vatues of » and y bocome

(=) +ewg(@+y +y—m =0, wyy—p) a4y +y—m=0
or (g ~+1uy) B+ Wy =1y o + (7 — )

and Wik (s +tg) y = w0y f + wy( — ).
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From Lhese we obtain the most probable value of 2, namely,

) wa¥s g
= LT & [’r (18+/ ?T)!

as in (5}, The formula for 7, in (6) then follows as previously shown.

(iiy. Do find the most probable position of & ship derived from
position lines, subject to o given condition,

Ag a practical problem we suppose that the position lines are
ohtained from compass bearings of » shore objects and that the
horizontal sextant angle (F.8.a.) of two suitably chosen objects, 4
and £, has been measured. A compass bearing can be read, we shall
suppose, to 1° and the w.8.A. tO 0'-1; if we regard the latter as acpl@z?t*e
in eomparison with the former, the m.5.4. places the ghip on &.par-
ticular circle passing through 4 and B, the angle subtendediat the
ship by the chord AB being the value of the A.8.A. O

If the centre of the circle is taken as the origingof “coordinates,

together with suitably oriented axes, the equation ?f the circle is

H(X, V)=X24 V1 K? =\01,\ ’ (1)

Referred to this coordinate system, Ahe’equation of & typical
position line can be written as o\

a; X +b*V¥WHb?Epulibrary.org,m (2)

in which M, denotes a meaguieii' quantity with known associated
valies of @; and b; also, t-]le'\weight is ;. _
Applying the gencra{itheory in §6-23 we form the function E

given by .‘E:wa(a¢X+bs Y — M.
For the most pmbal:le position of the ship, subject t0 the condition
(1), we have ™ om 122 o 0B % _o
AV axtexT er Y
Th .t‘.-:if; sbduce to two linear equations of the forms
\m}“ pX+gY—-s+)\X=0, gX—{--rY—t—k—AY-—O
from which

s(A+n ¢ yo AP -8
TArpArn—g (A+p)(A+rr—g

Substitution of these in (1) gives
(s(A 7))+ A +p) — sy = EHA +p) A+ — g

which is a quartic equation in A.
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The solution of this equation would, in general, involve consider-
able ecomputation, together with a discusgion as to which of the four
roots is the relcvant one,

A much simpler procedure than that just described s o find
approximate eoordinates (X,, ¥,} which can be taken as {he solulion
values of any two equations of condilion with widely different
numerical values of the gradients of the lines representing Lhe equa-
tions of condition. We can then write A

X=Xy+x, Y=Y,+v, a »
oA\
in which » and y are small quantities whose squares ane\piducts
can be neglected. A typical cquation of condition, (21T then be
wriften as W)

Az by —m, =10,
"\
where =M, —o, X =0, Y, &)
In the same way {1) becomes PN
$= (X, To) 42X g2 2%y — K2 =0
or ¢52X0x+2’}{'n};'§— k=0, {3)
where B = KA (X34 7).
The conditionw fodbiizy &M@%E{)ﬁ“&ﬂme values of & and y are then
given by

2 o) 2 , .
Eﬁ—xZwi(a-,;x{x\bs.gj—mi)z—a—A% (2X 242V, -5 =0,

together with a-.,éimi]ar equation in y. These are two linear equations
inw, ¥ and A 0§1€fhe forma

x’\.»
NVPrtgy—u+AX =0, gr+ry—w3+A¥, =0,

frou}\%\hich 2 and i can be found as lincar functions ot A of the forms

NS x=AA+B and y=CA+D. 4)

\ ) Rubstitution of these in {3} yields the value of A which, entered in
(4), gives the most probable values of z and #, and hence of X and ¥.

6'25. Precision of a function of several unknowns determined
from n equations of condition

Wo consider a function ¢(x,,2) of three variables x, y and 2
which are cvalnated, in an independent invesiigation, from n equa-
tions of condition (all reduced to unit weight) of the form

;&b Y+ ez —my=0, (1)
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o

in which, as usual, m; corresponds to a measured quantity with
associated error ;. From (1) the normal equations are

ax+hy +gz=M,,
ha + by -+ fz =M, (2)
gx + fy + oz =My,

where, in the notation of §6-09, a=[az], h=[ab], ote., and M = [am],
ete, The solutions of (2) are @y, Yo and z,, the standard errors of which
aTe o, jt, and g,
{ur object is to find the precision of ¢{xq, ¥o, Zg). .
Now, from 6-12(3) and (4), the true values of z, ¥ and z are giveny
in terim of the errors ¢; by : O

%

@ —xg=[x€], y—yo =10l and z—2= ['Ye]g..,( B
wherc a, £ and y are defined by 6-09 (16), (17) and (18'}:}\\'
For convenience we take the error, e, of B{%g, Youzo) 1 the semse
PN n
€ zgﬁ{x, Y, Z) - gb(xl)’ yO*'z'K)"s. ( )

then, assuming that the errors €; in (3) areguall, we can write (4), with
sufficient accuracy by means of Taylor’,} expansion, as

~
N

a wwsgdbraulibraggorg.in
R

or o= (e D+ [46) M+ [yel .
\ N/

A 3 )
where e aB) we(2), w-(), “
7oNEn Sy oo ozt

A ‘
Thus, o e=Slo LpM+yiN)e (6)
{ "\s v
Let #\Qﬂic standard error of the errors € then, by §6-12,
""o:; [w]
~O e ¥

\ N/
3

where v, is the residual when Zy, ¥o and z, are subst-itutec} in(1).
Now, in (6), ¢is alinear function of the exrors, &; hence, if }f¢ denotes
the standard error of ¢, that is, of the function ¢, then, by §4-14,

1% =pu's{o, L +8: M +y: Ny?
= p{lo] L2+ AR MP + [y Nt 2081 MN
+2[ya] NL +2[af] LM,
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or, by 6-11 (3) and {4),

2
,;.g=’;_ [ALE4 B2 ON2 200N - 20X L 2L, ()

where A is the deterntinant associnted witl Ui norised e(uations
and 4, B, ... arc the usual co-fuetors of the determing?, But, from
613 (3) and (4},
o A . A3 S "
o=y 115 ffy= A 17 fe= 7 O
henee, (7) becomes Oy
-3, 4 N
pE=L2u24 I Pl Nty _]_’J;—- (FMN 46N L4 Z{ff:-'.]f IR {8)

in which L, # and ¥ are to be replaced by ilw%ﬁn't-«ia‘ﬂn-‘s in (3).

This formula (9) gives the standard orror SER func ion & computed
m terms of the solution values x,, #o andgdof the normal eguations
{2} and the corresponding standard eprd: it can b rendily trans-
formed into a formula in terms of lai"'r:})ul_)lc crrors, Thus, if ris the
probable error of the errors ¢, thafs, of the measures py, and v, 1y
and 7, are the probable errors fot:n, #oand z,, then

£ ~oy
X

IR AR Ny y oy L. )
a)
6:26. Precisioqrwf"the coordinates of the solar apex and of the
solar;&ze ocity derived from measures of radial velocity
We illustrate the Principles of the preceding seclion by considering
a stzmg,grgl‘pmblem in stellar kinematics.

If(\_‘ > — ¥, —=z) are the equatorial components of the sun’s linear
vedagity, the measures of the radial velocities of the stars in a small

’E'fsglon of the sky Furnish an equation of condition of the form

~d
\:

GF byt —m, =0, (1)

where. My 1“’ the algebraic mean of the obgerved radial velocities of the
stars in this region and «,, b and ¢; are known functions of the co-
ordinates of the centre of the region. In gencral, the weight to be
attached to (1} is n;, the number of st-a-r: obseri-'ed in t-l'::f.'- region;
however, it will be assimed that such an eqnatioﬁ of condition 18
1.’e(};f:c:zd t(};L one of_unit weight and thus takes tht form of (.1 ).
nor:wzﬁl :qfafiii:c?r?dsiaif]z,}l fo;tyo and z, arc the solutions of :EZ
Meastres: L p * standard error associnted with ©
¢ WSOty pioy a0d g1, are the standard errors of i, y, and Z-
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The vight ascension, %,, and the declination, &, of the solar apex
are given,T with an obvions change in notation, by

ay=tanl(yfz), &,=tan " {z/\{=*+¥*)}
and the solar velocity, #, is given by
v=J{xt+ 32424
{iy Precision of 2. In this case, p=tan=(y/z), from which

oy W= W,

se atiyt By o4yt OV
It is found that ) is very close to 270° o that, eflectively, a:u_;yla\caﬁ
be {alen 1o be zero. Thus m’f"
P N P |
o -[ # £7)
LE(f—gj) =——, M=N=0 \,m\\.
axlo Yo \
If s, denotes the standard error of ot then, byxﬁé{@(S),
_ e ’..x\ w
U QO Y

Ju terms of probable error, sincef;:tﬁ*ﬁ?siﬁ,u-,
A %]yz_dbraulibr‘al'y_or‘g_in

'r?{—-
*y,
N\ e g hicl
(1) Precision of 85. In {B}X case, @=tan" {z{{r" +¥ 1}, from which
@:_ ﬁ;’ﬁ_\ @:—-—,if —l aqé'__]-?z\-'ll(x2+yz}‘
fhr e \{3,3\-1;‘?]2)’ e 2 (@) G Y

With the a pgpéxfmation introduced in (i), we have

w4 o .T_%]
,"\ L=0, -}Iz—?ﬁs "\_?;.2'
™3 i ¢
Heg'réc‘, from 8-25(8),
© )i 1 2,0 22 (1)
\" ﬁ%:—& 25;&§+ygﬂz—'z Fyﬂzﬂ .
v £ !

The formula for 7, can be derived at onee by means of 6-25(9).
(Ill) Precision of V- In this case gj — \I.'(xﬁ +.y2 4 22}’ {rom which
wp_v @ _y Wz

b v 9y v 2w
t W. M. Smart, Spherical Asironomy, 4th ed. (Cambridge University Press,
1956}, pp. 273, 275.
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Then, L=0, M =y,fv,, N=2z/v, and, by 6-26 (8),

1 s s 2p?
ﬂ'ﬁ:‘ﬁz (yﬁﬂﬁﬂaﬁEvL f - F S/nzn)- (2)
vEL A .
The formula for r, follows.
It is t0 be remarked that, if z; has heen caleulated, the value of
# can be found very simply; by the climination of # between (1)

and {2) we have, with the approximation introduced, . {\
a a b L a \
HEd el 2 L y® A\
0y = foy o ML '\\'\{}
Also R S Y S O
AN
>’
. ‘&
v \,
»
>
Ol
D
A N

www . dbrau l‘kls}g;\ry_or‘g_ in
&
«©
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CHAPTER 7

THEORETICAL FREQUENCY
DISTRIBUTIONS

7-01. Calculated and theoretical moments

In this chapter we consider the problem of representing a statistical .
distribution of a variable z by a function of z. More precisely, if gals
the frequency in the class interval bounded by z;—ic and «; %—‘%G}
we shall obtain the form of the function Fi(x) which best repregents
the series of points (@, ¥;) or, alternatively, the form of therfuhetion
Fiz) which best represents the relative frequency distribuﬁion, that i3,
the series of points (x,, ;N ), where N is the totalx&?@quenc}n The
next section deals with the former; thercafter, the theoretical treat-
ment is mainly concerned with the relative freguency distribution.

Tt will be assumed that the moments of yﬂ%‘lious orders have been
caloulated, from the statisties accordingethe processcs deseribed
in Chapter 1, The calculated moment of order r will be denoted by m,

with reference to the mean ¥ andnﬁf}gl' m,{0) with reference to the
Wiy dbraulibrary org.in

origin, Thus 11 ™
M =57 Xl —E) Y
" %) 1 1
and \1@(0) =% Tzl =5 [yl

N\

the last exprespion 'l;eing in the Gaussian notation.

Tor the dmoretical relative distribution given by y=F(x), the
moments éf\otder + with respect to the mean and to the origin are
denoted®By 7, and 4,(0) respectively; then

AN -
~\J ﬂr=J‘(z,_g)rp(x)dx=‘[{x-—x)"ydm
\ 3
and PR (D) =J.xfy da,

the integration being performed between the appropriate limits of
x furnished by the data.

The characteristics of the fumetion
be deduced by identifying the theore
caleulated moments.

F(z)—and of Fy(z)—will then
tical moments with the known
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7:02. Representation of a frequency distribution hy a poly-
nomial

When we are given the frequency y; (=0} corresponding to the

value x; of the variable » the limits of which are r, and o, (o>,

the distribution shown by plotting the points (o, ¥, as in Iig. 13

may suggest a polynomial representatiom, For example, the curve

may be a section of the parabola with the equation

_ N

Y=l B4 (2, (1

1f we write 2y =2 + &, we ean conveniently suppose that (;I,lfﬁ“r}ffﬂ"md
to Oy, 0) as origin, the variable now Iving in the rared oSk

N
'O
.- =3 -
0 Oy (e, QU L M (v, 0

wiww.dbrauli bi'gf“yigrggi n

If P(w,, y;) is a slatigtical point and @ the point on (1) with abscissa
x; the differcnee, PQ:I;de% to the equation of condition

N\
N\ NS + B, 4+ Ce?— gy, =03,
in which A, }f ':i{ﬁa ! are unknowns: the most probable values of these
are foundoér‘gm the normal equations

\Q" A+ Bz, +(%22= Ty, =N,
O AT, + BS2? 4 OZad = Sy, = Ny (0), 2)
" \ ,\; AZa}+ BZa 4+ O%pt= Dy, = Nm,(0),

" the numerical values of (0} and ,4(0) being supposed known; the
brecision, if required, of each of A, B and ¢! can then be oblained by
means of the methods deseribed in Chapter 6.

The theoretical moments y,(0) are given, for r=40,1 and 2, by

k k

N= [. ydr= [ (4 + Bz +Cx%dex,
Jo Jo

& E _

wyde  and N {0) =f atyda

q

Npny(0) =j

1]



aa

RLEY Representation by Polynomial 15
frown which it is casily found that
A4 1Bh4 10k =1j{NE),
34 15k 4 LOF = i (0)/(NR),
14 - LB 4 1072 = pro{ O} (NF).

If, in these, x,(0) and py(0) are identified with the caleulated
moments i, {0) and my(0), the solution of the equations gives values
of A, # and ¢ which should be equal to, or in close approxXimation
with, the values derived from the solution of the equations (2).

1f a closer approximation is to be found, the equation of ,t-hQ
theoretical curve can be taken Lo be 2N\ o~

y=A+ Bx+ a2 4 Da, AN\

)

in which case the moment of highest order o be caleu ]Q’l;;id is.-m-a{()).

7-03. Representation of a frequency distributidh by a trigono-
metrical series , \\\“
Subject to certain general conditinns,’iﬁich gome theoretical
gtatistical distributions satisty, & func-t-io’ri ol can be represented by
the Fourier expansion o \!

\

y=fla) = Ayt 3 (0ersupsihobrg in
=Y

where k=1, 2, .... This forénof flz)is particularly relevant when the
statistics possess the ohaﬁf@iieristics of periodicity—us in the case of
the heights of the tide duting a {unar month. Inpractice,itis sifliclent
0 assume that i) ;s rcpresent-ed adequately by a finite n wmber of
terms, PN\Y;

Let o, (=@hand x, be the ends of the range and suppose that the
range is i€ided at w;, €, .0 Cpog MEOR equal sections. Choose the
unit of F be 2 jn; thon

29y
N A S f,i‘,‘w —_—
P N n
'"\ w4
¥e congicder the frequencics, ¥, for values of r=1,2, ..., n; then
Darhr . 2wk
Eir'_—/-{o‘{‘zk: (A,,ccos—n——]-Bksm?— ) {1}

where & is now limited. We thus have (2k+ 1) constants and n values
of the frequency. If & — 3 + 1 the number of equations (1) is sufficient
for the calculation of the constants A and B.

Gienerally, however, the number of terms in (1) is smaller than #;
for exanlpfe, if y is the mean monthly temperature throughout the
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year (n=12), the statistics niay be adequately represented by soven
terms in (1}, eorresponding to the values k=1, 2 and 3. The constants
are then cvaluated by a least-squares solution,

Assuming that 2k+41<n, we have the normal equation corre-
sponding to 4, given hy

n T 2l [ Fhr |
5 . ZITRE 4 ;
Su=nd,+3 |:zlk Seost LB, Ssin- |, (2)
r=1 k r=1 # r=1 Ho )
n sin Ina \
Now Seosra=——""cos}(n+1)x A - (3)
=1 sin ¢(\A
. N T
L sin nx | y W
and > minza=—2-"sinn+1)z AN %)
el sin da L)
Hence, if o=2nk/n, then sindnz=siukr ={,Lolkequentiy. each
snmmation for r in {2) vanishes so that \
1 NG ;
A=ty (5)
] n 'h..\ S
) 3

The normal equation cm*responglih?g%é a purticudar A; Is obtained
by multiplying {1} by cos 2rkr {n qd summing for 7. Then, if j %k,

. 2rkr L 2k 2mkr
pHALLE e \«id}uﬁmrb;grjndmoﬁ —
T r " L

'\ } .

~ . Ak 2o Dagr

<~.,;+%Bk-zsm—-;§+zajzcos T s 2T
T ) ¥

E7) ¥

O Dok | 2miv
> Ned N oo .
+E.‘ B; Y cos G, S .

)

3
/
"\ T

H

\w
4 :
Q in+1Z cos dmkr or
7

e

”\I}y' 3). The coefficient. of 4, is

N

\ }

By (3) ) hlq\é'éeﬂ'lcien’s of 4, iz zero, The coefficient of 4, is

27,

2l 49 Dt il
1 [cos 2k ti)r o 2a(k—j)r
r n T

and each summation vanishes by (3). Similarly, the coefficients of
B, and B, vanish, Hence

2 2k .
ALZ_Z y?-CDS _,H‘ ({J)

n< %

2 2k

Bimilarly, B,= . > ¥, sin - {7)
r
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7-04, Precision of the constants

When the constants 4 and B have been found by means of 7-03 (5),
(6) and (7}, the residual #, corresponding to ¥, is given by

2k 2l
vo=y,—dg— 2 (Akcos-ﬂ—h-}-BksinE). (L

k 7 L

Then
2k . 2otk
Se=Yy-ndy—3% Ak2003£+3k}:sm£].

% m T 7 “.\

Hence, by 7-03 (3), (4} and (5), Zv,=¢. O\

The derivation of the normal equaticns in the previous seglen
for the 4’s and B’s, regarded as unknowns, is equivalent to~the
application of the prineciple of least squares, namely, th&t“}f =T? in
a minimum with respect fo the A'sand B’s; then, fora E{i'titﬁula.r A,

av év

2 =9y =0, \

84, T8d, ’:j\\«

..\ v
pri O .
or, from (L), 3 v, 008 T 0NV (2)
» n Y N/
Sirnilarly, 3, sin“%ﬂ{[&ulibrary,org,m (3)
r RN
KNow, by (1), ~ 7
Dakr . 2akr
sz?"r[yr'dn{ri AJ;UOS‘—*—FBKSLH—-— '
T N " mod
or, by (2) and (3) ag@l@nce T, =0,
\\} V=Xv, %
hence, by (1),
J 1(%)\ ’ b o 2
[1".3_}}'?\. }_..Aozyr—-% Ak??)‘rcos_ﬁ_‘-}— kgyr‘ 7 '
apd (b 7-03 (3), (6) and (7),
3 -
fov] = [yy]—nd§— ﬁL(A?HBE}, (4)

of [ww] is readily derived.

from which the numerical value d.
the quantities z, then,

If 1 denotes the standard deviation of
by 612 (11), ror]

M 5
‘uzrn—-(?k-‘rl)’ )

since 2k +1 is the number of unknowns.
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Tn T-03(6), 4, is a linear function of the ' Lenee, 1 ¢ denotes
the standard error of A, then, by 3-07 (11},

ENTS Zakr 2%
ygz_.ﬁ.ZcQSz ——— = /
(o i

H 3

Thus, » is the same for all the A’y and, as it is casily #ecn, for all
the B,’s.
Also, if v, denotes the standard error of -1, then, from 7-03 {5),\

L
V= ~. L\
7 L
S
The solutions, with their precision expressed in T‘;’I-I-’!llh-"“f:‘f standard
error, are. A\, ¢

1 H )
Ag==Ey .+ A
L1} y?—.\,-'l??;’ '";}\

2 2 ,": . _.2 -
A= Zy,cos 7 ?i"&:»\j{-]’
n " ~\ R

X

h D ¥ ’2
Bk=%2? T.siuﬂi;eJ(—),
7 wt 7

where g is given by means of\ @) and (5).
#S g ‘\arwxa;%cgbr‘au}{fb{.fa{‘ .{)I"%lll(’la} .

The precision M ternis*of probable error can be expressed in the

usual way, 4 :

7-05. The Grjan}-Charlier series

This is a ggncs of terms which takes into account the departure of
a univa-riad::&distribut-ion from & normal distribution. The serics was
derive;d(c;]} theoretical grounds by Charliert on the basis of the con-
cepﬁq’nﬁof ‘elementary crrovs’, discuszed in §2:18 in connexion with

Ha :g}n’s derivation of the normal function,
N v Denote the variable by «; then the statisties furnish (i) the mean ¥,
'"\; wand (ii) the standard deviaticn, o, together with the higher moments.

Let fia) denote the normal function with the parameters x and o;
then I

fle) = — o emts-afizat, M
o (2m)
We use this form of the normal function as being more convenient
when we consider Hermite’s polynomials later in connexion with the
Gram-Charlier serics,

Tt C. VL L. Charlier, Arkiv. for Matematih, Astronomi och Fysik. Bd. 2,
no. 8, 1805; soo also Medd, frdn Lunds Astron. Obsereatorium, ser. 1, 110. 4, 1908
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1f Fix) iz the relative distribution function asscciated with the
chatiztios, taken over the complete range of values of x from —co
ive Cram-Charlier series is written

A, d°fix)
Zoal ar

ne=0

Fiz)= (2)

h the A’s are constants to be determined eventually in terms

in whig
of the prineipal moments derived from the statistics. The series in
{2} iz wometimes referred to as the A-series,

By definition,

© ¢
J. Flaydz=1. (3, -
— e\
Also, thz theoretical moments, g, about the mean, ¥, are gich Ey.
#,;J_w{x—ﬁ)f Pz} de. M;\’g'g {4

The use of a series such as (2) implies, on genecal grounds, the
neecessity for a discussion of the eonvergsncy of ?h.Qeries, which may
not be immediately practicable. Thig difficultzi\can be overcome by
recarding the statistical distribution to hé\adequately represented
by & certain mumber of terms—say, up tQ shit with n=6; in such eases
it is presumed that the statistical distribution i clogely allied to &
normal distribution and, accordfﬂglﬁi;%@iﬁzbmmwﬁngﬁ{x) is then
essentially an empirical formula, ™S ¥

in the caloulation of the‘several constants, A, the theoretical
principal mowments, f,, willybe oquated to the corresponding .c;a.l-
culated monments, ., d}_\m\aéd according to the principles det’-‘:OI']bC.d
in Chapter 1. In pa;‘tfgu]ar, gince ¥ is the mean, 7 =0 and, identi-

fying m, with g, x\'ie',have 4y =0, (5)
.. 7, . 8
Similarly, Y frg =02 (6)

It is to be'%membered that ¥ and o are 10w supposed to be known.

{06, Transformation of the Gram-Charlier series
In 7-05(1), write t=(x—TE)0o, (1)
and let ¢(t) be defined by
1
— gk (2)
qﬁ (t) \:.'{27?) €
with the ohvious property, on writing {=7 42,
) 1 - a
= | erdr=1 (3)
,[..mémdt w‘rﬂj—m
a0

1
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1
Then, frow 7-05 (1), flw)y=_ (o). (4)

d 1d 1

Also, from (1), D el
AN :

where D denotes the aperator d/dt; further,

in .
r.,n:_ln DN’
thie o I\
dnfla 1 A o
20 that - ﬂi} = D, 2 A (5)
flan gl :’.\ o
N\
Kxpress F(x) in terms of £ by means of (1), and lgt-‘},‘ g
cB@ =yl (6)
A AL,
then Wi =3 - = D"y \
n_g ! \
0 e :\\J
ar, if we write a.nz;f’} {7)
Pl
then O {;n D, {8}
e
From 7-05(3), \{\{\gﬁ;&l% %%%}%?é?&jgy Bna,nd {6,
N\ J G dt=1. (9)
(\J -
N o
Also, from '7;@,55}4), fp = OF l‘ ) i (10)
¢ o oo

707, ﬂ}rﬁite’s polynomials

wmite's polynomials, H (1), are defined in terms of the function

W) by
;"<.@ g H,O¢{t)=(—1)" Db, (1)
,">” The firgt few polynomials are readily found; thus H,=1, and since,
from 7-06(2), D= i 2

then 2y =4; also, D¢ = — D(igp) = (2 — 1} §, so that Hy=#-1.
A general formula is obtained by applying Leibniz’s rule to (2);

thus
R Dl — — Dty = — [1Dng -+ n D14
from which, by means of (1),

Ifﬂ+l=tHn_an—-l' (3)
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Algo, froen (1}, SDH ,+ H, D$=(—-1)» Dvig,

from which H,,=tH,—DH,. (4)
Hence, Trom {3), DH, =nH, ;. (5}

By mcans of (3) or (4), and inchuding the earlicr results, we have
H,=l, H,=t, Hy=#-1,
H,—=t3—3, Hy=t'—6+3, (6)

H.=15—10t3+15¢, Hy=15-- 1564 + 452 —15.
Clearly, any polyuomial is of the form P, ’\t\"
A
H, =tr+ot" 4.,
antd hence DrH, =nl. f ™y (8)
Wultiply the expression for yr(f) in 7-06 (8) by H, andj{r‘qfegi-a-bc; then
J H,(t) dt:Ef e, H, D gt 9
- 0J—w & °
] A
Consider the integral AV
@ ° :', K é’ -
L., zf H Drpdt= (7;1;}’*‘3 H, H,¢dt. (10)
- ;\%&"&\;_d r%ﬁ[ibrar‘y_or g.in

Then, from the first form of the miégral,

Q

I'.".'n = [H,.D.“{_:i}]fw - J
. \\

n-1[H,H, , $]%, which vanishes,

DI, D gt

The integrated par't;‘i:s:t}qual to{—1}
gince H, H, ;= +... and

2o ‘o (1P e =0,
o° |t1|1-ric (t7 e~ 2"
O @
Hence 39 I .= —J. DH, D t¢d.
o N : —a0

~\J _
B{i‘Cpe&ted applications of this procedure we obtain
T et an

If # and 7 are unequal, the second form of the integral in (10) shows
that it is immaterial as to which is the greater; let #>r; then, from
(T), 071, =0 and hence, by (10) and { 13,

Jm H,Drédt=0 {ran)

I1-2



164 Theoretical Frequency Distributions f1-07

Accordingly, (9) reduces to

J. H,.r,-if(t)dt:u,.’ O, Dgdi=a,l,,

LoDt

-

:(_])Tﬂ'r

by (11). But, by (8}, D'H,=r!; hence a, i given by

J H, () dt=(—1ya O a2
s . { S
7-08. Expression of the constants @, and A ~ih terms of the

principal moments N R

3
By 7-06 (10), i F \

m,.&(t; (.J (1)

Now, by 7-07(6) we can express s St %rms of H., H, ,,.... Thus,
with Hy=1, we have \W

& M

ol

t=H,, N

"3

W W ﬁb?atﬂérhtgby orgin
t'? o 3H s
_“{Is 1 @)
E\AII4+6[I2+SH ,
) P=H, +10H,415H,,

O B=H,4+15H,+45H,+15H,,
or, in 0e eral,

\:\\ U=H +B, Ml _s4+B, H, +B, I, +..

w}xc\e for values of r=1,2, ..., 6, the B's arc given hy the numerical
¢ ’Qm}ﬂlclel’lts in (2). Hence {1 beoompq

O

[r=]
finf = f (H,+ B, H, ,+...)irdt
o

o

={—1) [+ B, ya,_(r—2)'+ B, ja, yr—4)!

+ B, g, glr—6)1+...1
by meaus of 7-07 (12),

Wo obtain the following results from the previous equation.

(i) o= f " Y di=a,,
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inece the value of the integral is 1, by 7-06 (9], then
ag=tiy=1.
(i) Mfo=—ay

But, by 705 (%), #,=0; hence @,=0.
(i} Hofot=ay. 2V 4.

But gy =0? and a,=1; hence a,=0.

{iv) fgj T8 = =[5 31 + 3]

= —ay 3L
{v) syt = a4+ 6a, 21+ 3a,

=a,4!+3. R
(vi) fisfod = — 2551 + 10y 314 1524 \"

= — g 51+ 10ug 0.
{vii) st 8= (3561 + 150,41 + 450, 2! +{‘§au]
=y 6! + 15p,/0%—30.

\ 4

165

These give «, in torms of the prmmpa} t};xeoretmal moments. Now,

by 706 (7),

A,=1, 4 S, =0, Ag=—pia)
A= 30, Ay= — (510055,
;\"«;’Ag\:;;sw 15,02 +300%.
The Gram.Charligrieries, defined by 7-05 (2), becomes
’\s
8 A, dof(x)
\ F(«’v}=f(x}+2ﬁ e

Ww hgg@"}ﬂ.a, Ay, ...are gwen by (3).
¥¢ can expleqs F(z) in terms of Hermit
\TOW by 7-06 (3) and 7 7-07 (1),

drf(z)_ 1 DW:E:EH“@);&(@‘

dan o™t ot

Also, flx)= :;;é(t); hence
Fo [1+§:(—1 aAﬂn]H(i)]f(xL

where {=(x:—7)/7.

A= %W ‘dbraulibrary.org.in
and we obtain from (i)-(vi) thefollbwing expressions for the A’s:

{3)

(4)

¢’s polynomials as follows.
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7:09. The characteristics of the Gram-Charlier series

The characteristics of the distribution given hy 7-08(4) or (5) are
T, ge=0% and d,, 4,. ..., the latter bring functions of ¢ and the
higher moments g, g, ...; in the evaluation of Aq, .. these
higher moments are to be identified with the calealated moments
Mg, My, -e s

We can replace 4, and A, as characteristics by the skewness,
/j‘%‘ , and the kurtoesis, /,, introduced in §1-09 and defined Ly

1 Ha : _ e My ¢ \:\
f= s and ﬂ2_;75;a4’ O I
hence, by 7-08 (3), A\
A:l i .:’14 . \ )
= — /2% and ;zﬁg—t{;j\\

7-10. Theoretical frequency distributfens derived from an
assumed differential equation ¢

The differential equation, first intrddueed in the present connexion
by K. Pearsont and studied by h im I all its many ramifications, i
ldy N Sa—=z

N, S . 1
wiww.d br‘aﬂitﬁﬁgﬁgﬁ‘rélmﬁ- hxt? @
in which «, by, 8, and prarc four arbitrary consiants. T'he general
solution of (L) is dengtdd by y= F(x).

Many of the fr f;u?:ncy distributions encountered in practice
rescmble certain theorctical distributions which are derived from
(1) by assigningFarious values to the four constants: for example,
the mode IAj&/given in gencral by dy/dr=0, so that for many dis-
tributiongD=e, the value of @ in (1) being now identified with the
modenof the observed distribution. _

(Wil be assumed that, for & given statistical distribution, the
privicipal characteristies have been found by the usual procedure

o (deseribed in Chapter 1; these characteristios are the mean, %, and the
\J culculated principal moments, m,.

If now y=F(x) is the theoretical relative distribution corte-
sponding o the observed distribution, the theoretical principal
moments being #, , the constants in {1} are to he found by identifying
e, with m, 50 as to provide a sufficient number of equations from which
the constants can be evaluated,

Lot o, and 2, define the range of the variable. Tt will be assumed,
meanwhile, that y=0 at the extremities of the range; cxceptiona-l
cases will be dealt with as they arise. Since £(a) refers to a relative

T Phil. Trans. A, 186 (1892), 343; A, 216 (1916}, 429.
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stribation, we have at once the condition that the area under the
curve iw uaily, thatis,

o= j xﬂydxzjmg Flayde=1. @)

iy a5

We shall frequently refer to this condition simply by saying that the

ares sidor the eurve is finite.

We sme at the outset that the origin is chosen so that the
3-ax! the centroid vertical, that iz, the axis through the mean
absreissn of the given distribution; thus, the calculated principal
momet, my , 18 zero and hence, on equating m, and g, , X

£ AN
-MEJ wyda =0, OB
% 7%
in which y= Flz). Similazly, AN 3
g { &/
= j zryde. S (4)
iy

It is Linportant to remember that throughout’t,l‘ne}:‘&‘-nge yis positive,
being zerc at theends of therange except in thegpecial cases alluded to.
If «, denotes a positive number and M Na positive or negative
number such that la, | <y, the relexant possible ranges of the
variable are: N .
e (i) % STE T Al .é}dﬁ%&i%gr"y_m'g_in
(i} —o0 €T Ey ‘fiv) —ogegn.

74\

P\ . .
7°11. Standard for:rxqfcﬁe differential equation
n, I

The choice of origl de in the previous section leads to & simpli-

eation of the diﬁ‘el\'erﬁtfal equation 7-10
AN (a__x)ydxz(bu_{-blx-}-bx?)dy. (1)
¢ “\: & "
Hence f'z{};— x) ydm:[(bo—kblx-{-bxa)g]ﬁ:—J (b, +2bxyydx (2]
b #

(1) which is now written as

‘”\'" g *y
&y~ @by [ yie— -2 | wvao=r,

xy

where P denotes the integrated part in (2). By 7:10(2) the first
integral is unity, and by 7-10 (3) the sccond integral is zoro; hence

arby = P= [y byo kbt gl 3)

1u the caze when the lLimits are finite and y=0 for &=, and f(‘:n:
&=, then P=0. Inall other cases, as we shall see later, we can still
take P =0, provided certain restrictions are imposed on the valnes of
one or more of the four disposable constants.

N\
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In all cases, then, we take P=0 and henee, from (35,
b= —a,

The differential equation can now be written s

ldy  a—x b+ )
ydz by—ax+bat™  bytby s bt
either form of which we can regard as Pearson's standurd Myt
p \:\'
7-12. The theoretical principal moments O
We have, from 7-10(2) and (3), (J}‘.
fo=1 and =0, ,'\ (4, (1)

Multiply 7-11(1} throughout by 27, wherd\Nas one of the values
L, 2 or 3, replacing b, by —a; then integrate hetween the Hmits xy
and x, which are omilted, for sirr}pﬁ&i ¥, from the sulisequent
integrals, Thus S

af;t:"y die— J“v”lyd;r, = f{bn xr— (‘m?’}’"l + b2 dy
o ety pBEAYy T2

O ‘f{bo-rx*—l—a(-r+J):rf+b{-r+2)-vf“}ydw’
whence, by 7-19?4},

p X \’ o7ty —arg, +{b(r +2)— Bt =6, (2)
where Q,j‘{hé integrated part, is given by
4 "\‘5 v
A\ Q="(by a4 ba?) y 12z, (3)

,I)’é,w, the calculated moments, wm,, are finite and consecuently,
Jbecause of the identification of My With ., the theoretical moments
\ Jin(2) arofinite, as they arcin the case when the range is finite and y =0
at each end of the range; then ¢=0. In all other cases, when, for
example, the range is infinite or when g is infinite at one or both ends
of a finite range, the theoretical moments are finite if §=0; as we

shall see later, the condition 00

requires, in general, the restriction of the values of one or more of
the constants in the differential equation.

For simplicity the expression for ¢ will he frequently written
without the Limits
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In {2) pat r=1, 2 and 3 in succession; then, by means of (1), we have
by-+(8b—1) stz =0,
Qag,— (4 —1) stz =0,
bty — Bty + (80— 1) g =0,

These are three linear equations in &), « and b from which each of
el

the istier can be found in terms of gy, gy and s, If A is defined by
A= 10y, — 1213~ 18p3, @
it is casily found that Y
1 5 ¢ \A
b A = o pta s — 3113); o\
ﬂ..‘lﬂg = _#3{}""4 + 31”’;)! :‘::" i {5)

bApS =2ty g — 3p3— 645 R4

L 0w fg, fty and g, are equated to the known nwmerical values of
iy, mig and my derived from the actual sta’r-isti‘ga\\;jistribution, then
by, o and b can be evaluated. \ 4 o

1 terms of the standard deviation, oyt the characteristics §;
and j,, defined, for example, in 7-09 {1), we’have

< o
oy NS — — 4
=g =02, fig= -mg@gfﬁ%ra&‘ﬂm?ﬁ? éﬁ:?gq in

N

Then, from (5), we have Ny

L2 4, -38)
b= (45, —351),
p {:,?\ Fl { ﬁ % 1
N ot _
RUS -—as-v% (fat3), (6)
pY;
:'\"'
3"\.: 4 b E
“’here-~«§.>deﬁned by (4), is now given by
~O° A=108,—126,-18. 7
The constants, by, @ and & in the differential equation can now be
evaluated in terms of the characteristics o, f, and By of the statistical
distribution,
The differcntial equation becomes
iy ofBEItA
g ds gr(dfy— 3+ oBlBa+ B o+ B 366

It is to be remembered that §, and 5, are positive quantities.

(28, —3f:—6),

b |
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7-13. Skewness and inflexion

The mode, M, is given in gencral by M =a corresponding to a
maximum turning point. for which tyider=0. In ternws ol Pearzon’s
definition (§1-00) the skewness is (@ —M)io. Now, sinee the y.axis is
the centroid vertical, then 7— (3 henee the shewness is - @7 or byfo,
which may be written, from 712 5} and (6, in the alterna’ o forms

#s(2+3) or /)’_'?' Gt 3) N
Ad? A e A
oA
The skewness is positive or negative according us - lrah: 1", have
the same or opposite signs. \ >

For possible points of inflexion we must have (2B 0. Change
the origin to the mode and write x—a=£; Q&;i’ the differential
equation beecomes N

1 dy £

Y dE dtof s

dy’,\ i
or (4 cE 4+ bENARE — &y, ()
3
whoere d=bu+a2(b—v}}’iz:ﬁnd e=a(2b—1}.
Di{-fcrer1tiatw%-}r.dﬁj:hutﬁ§ﬁ§j&--‘ﬂjg§? then, putting d2y/dE2=0, we
bave
o dy
/N 4 2{) ] £ = . 2)
SEHENg = oy (

Since dy/d¢ = 0 orﬁ}f at the mode we have, from ( 1}yand {2} by division,

A g 0
:o\u' > b+l

£

(3)

. & . i s )
. _[N{gtherc are two points of inflexion equidistant from the mode
1{ d\'}nd {6+ 1) have the same Bign, or if

») (b+1){by+a%(b— 13} > 0. 4

7-14. The theoretical distributions
The differential equation iy

L dy &—x (0
Yz by—azy bt

the origin being such that the ¥-axXis is the controid vertical. In (1)
the constants @ (= — b1}, by and b are expressed, if required, in terms
of o, #, and g, by means of 7-12(5)
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"The distribution depends on the numerical valucs of &, b, and b,
or, alternatively, of o, #; and £, and, in particular, on the roots of
the cundratic equation

‘ g by—az -+ bt =0, (2)

to whick we refer as the auxiliary quadratic,
We now discuss the various forms of the theoretical curves.

715, Curves with mode at origin ~
Here n=b,=0 and hence f#,=0. We write (1) in the alternatives,

forms 1dy @ ds \' \(1;
Tydn byrbat AP+ 2fy-3) 7 \
where A=108,—18. o @

&
There are several cases according as b is zero ot pomt‘i?e or negative.

iy b=0or 3,=3 :.\\.}
Then 4 =12 and by = 4,074 =0?; henee ¥

3

i dfy _xg:::

yde Jo¥

7 S LI
and, eonscquently, Y= %ﬁgi,‘_%fm.au library.org.in
where y, is the value of ¥ wj{m z=0.

i

This is the norma) diehibution in which go=——mr, since the
\s,i y 17)

area under the curye is anity.
Since : ~\11j'r“1' {xre._le.zaE}___O r=0,1, .., 4),
x'\. ..Fa: |~z
the integr@bed part, P, in 7.11 (2) vanishes and the integrated part,
), in T4 2) also vanishes, . ‘ L
"THocondition for points of inflexion, given by T-13(
é\rjq\}c-hese are given by f2=a2=by=0%,

4), is satisfied

as in § 1-15 (i), since h2=1/20™.

(i) b positive und >3
Then, by (2}, 4 >0 and hence by > 0. From (1) we have at once

b —128
y=yo(1+b~0x2) : (3)

he y-axis; also, since b, and b are

The curve is symmetrical about & Jlsc
' d the z-axis is an asymptote.-

positive, the range is — £ £ 00 Al
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In (3) put by=5bx® and =2 tan 6. Then, siuee the aren ander the
eurve is unity, we have

1 3:4
Qxyuf cost-28ib g ger.— 1
0

Now, the Beta funetion, B(sn, n), is defined in general ha 114 (15),

namely, .
Bim,n) :,Zf SN2l aogta-10 47 {4}
0 N
with the conditions >0 and 1 > 0. Henee AN
e
I 1-6 o\ e
B{-.= ~)=1, 5
%y, (2_ 97 ) ~\ {5}
in which, necessarily, 0<b< 1. This conditign?ey Automatically
satisfied, for, with \ ~\
=0, b=(28,— 6)/4 and AN lU‘{JE— 18,

we obtain £, > , which is in accordance’{ﬁﬂ'l the initial assurnption
that 4,> 3. 2\ N

We can express (5) in terms ut Gammd functions by means of
1-14(16), namcly,

Blm, n«}, H? ]—) (6)
Hence, since }"(k.\l‘}«l_w d,lpraul,[bl«ar'y org.in
24 ‘1 —h I
N - .
.fz’fx’*"”r( 5 )/rlas) = &

The value of Jo\m determined from (7} by means of tables of the
Gamma funectign?

The rangpefvalucs of &, howover, is restricted more severcly than
that a]rea'dq,»ﬁel ived for, to satisfy Q=0 in 7-12 (2), we must have

N>
O . B\ I-liew 1,
\\ lim { b (l+—x2) =1
R om0 J

\"for the values »=0 (corresponding to P} and r=1, 2 and 3. The
\ ) condition is equivalent to

lim {xz f1b)+r} 0
{z|—eo

’o

hence b < 1/(2+r). For r=3, the largest value under consideration,
we have <L,

It is easily seen that the coudition for points of inflexion is satisfied;
these are given by
W
: =_r27
3(fy—

The curve is shown in Rig, 14,
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(i} & negative and 0 < f3<3

From 7-12 (i), 4 is positive; hence, from (2), I8 < Fa< 8;also, from
7-13 (B), by > 0.

In {1) write y2=2(3 — fy) and % =4f,0%; then

1dy Az
Tydz yg -2
22 Ak
and y=yo(l —'—2)
! O\

Since 4 >0, therangeis —g<x < g, andy=0at each end of the I:a&'ige':“’
« \/

\'\‘v’ Fig. 14

The area under:t’rie“;:urve is chviously finite.

Since the 1.'ang§§é'ﬁnite, the condition @ =0 is satisfled.

The conditign for points of inflexion reduces to (148)by>0, or,
since by >0,%6 1 +4 >0, from which 2< Ba<B.

It is“g‘ﬁhy seen that g, is given by

) 40,
\M\” yan(1+2_’}’_2,§ =1.

) ; Az ) Ayl

Now, dy_ __'c_y; (]_ —-—2) :
de g% g

the z-axis at each end of the range if

Hence the curve will touch
21, the tangent at each cnd of

A >22, that is, if 3> f,> 2% H fy= ! each end o
the range will make an acnte angle tan-1 (Ay,/gy?) or tan~! (2g%0/50%)
with the o-axis. If 1-8 < f < 23, the tangent at each end of the range
will be perpendicular to the x-axis,

The curve for 21 < f, < 3 is shown in TFig. 15.

N



174 Theoretical Frequency Distributions [

-3
f—
[}

(iv) b positive und 0 < f, < 3

In (I)—{ifi) the initial assumption has becen thid $he vwiode is at the
origin, that is to say, ¥ is a mawimum wheo r—(. Although the
present ease does not eonform to this assumption, it is convenient to
consider it at this stage for, as we shall S0, i W Midhim o when p=0,

The formulae 7-12(6) show that 4 is negative, so Lt e 3, < 148,
and that &, is negative, o\

Y N

i
|
|
[
|
& :
O~ P ¥
g&” < — &
N (=9, 0) 0 2.0 X
,\\,“ Tig. 16

From (3), on sctting p2= —b,/b, we have

Ldy @
Pl it
] 22y~ lizs
from which y:yo(]_ —}—)2) .

The range is —p<us p, and, at the ends of the range, y=oc. The
curve is shown in Fig. 16. 1t is obvi

ous that y is a minimwm when
x=0; also, x= £ p are agymptotes,
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In this onee Q=[x +ba®) ¥l

F2 1-1426)
=- biogyo[f( 1 __q) ] ;
o

hence ¢ —0 when | =p, if 1—1/(28) >0, that is, if 6> §. This is the
condition for equating theoretical with caleulated moments.

iy s wiven by .
v 1 i
-, 1——|=L

7'16. Curves when b=0 O\’
Fron: 7-12 (6) and (7}, the given condition leads to the fo]iowip;jx:: K

28,=3p,+6, A=3(A+4), b=0% 1:]2“”?%““’3% W

N

Thus &, and b, are positive. Then K¢
Ldy byt A\,
Tyde bletr) N0
where o, =b,y: v ix positive, Hence ‘\ v
q," f . v :
y=yo(1 +;) A )

where f={y— bl)f‘fbl\?i‘-(%:’-_d‘gl')éélibl‘ary.org,in (3
There are two cases according ’zié}b 0 or as f <0, that 15, according
as 8, < 4 or as 5, > 4. We ignére the trivial case when f=0.
2 3
() f=0or py<4 \\"'
The range is ‘;;‘g,i.:g co. Since {0, then y> b,; accordingly, the
mode, z=a¢= —bi,\iéfon the origin side of the point {—,0).

Als N
0 D7 g=rE+ byl

A4 ) " |
.,’,.\\ =b, 'y-yu[(l +$) A e—x.bx]; N

N
al
S

£\
l\éié?e@ —0 at cach end of the range. -
BY setting x+y=>5,¢in (2), it is readily found by considering the

ares under the eurve that

o) e TU+D=1 B
-1
From (2}, %Z.—_ (J.—i—;) Rx},

The z-axis is a tangent to the curve

where R(x) is finite when = —7%- _ the curye
9_"The curve is shown in Kig. 17.

at O(—~,0)if f> 1, that s, i 0 <pi<
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Iff=1,thatis, if §, =2, {he tangent at € makes « finite neute angle

with the w-axis. TE O<f< 1. that is, il 2 <o ffy <l the taneat at © s
perpendiciilar to the z-axis.

(i) f<Oor f,>4

The range Is —v < o< 0. Then y=o0 when o= —+ wral 4 =0 when
t=oc. Also, from (3), f+1=4/3, and hence F4 1= 00 wrcardingly,
from (4}, @=0 at each end of the range,

Y O
| &
.\\ .
I O
! O
C | Yo
(=% (~b,00 O NV X
(Modc) A\
Fig. %Y
\a\rww_dbr‘aulil? E":r%}gm
ol
&
O }
f\/‘ | Yo
::\;,‘}
i"\"v L‘.‘
\‘.' (-»0 O X
,‘S\ Fig. 18

\/ The equation of the curve is given by (2} and , is given by (5).
/ Thex-axis and the line x— — ¥ are agymptotes. The curve ia shown in
Fig. 18. The mode is non-existent.

7:17. Curve when the roots of the auvxiliary quadratic are
imaginary

The differential equation can be written

L dy &—x _ate—(xic}

R
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wherc o= —a, bd=bh, and gr=d-c’ (1)
Heneo

o 1 !o(;z:+c)2+gz] atef (a:-g-c‘) 1 (c)]
a7 — oo — o —— tan 1 —tan -1,
tog (”x"u) 2h o l g | by l i g

from which

TEYIPSE —1j(2B} ¢ g ;
e AHe a1 __)} 2)
Sf—u%{ C-2+92 eXp bg c:r—]—d

' g N\
Sinee tan! (L) —tan~? (—) a3 [x|>a0, A o

ox+d ¢ O\
the range i infinite at both ends provided that &>0; then Y L0 at
each end of the range. .“'( N

b4 M'\;.”

0"
R S l.dtlr°aulibr'a '

N
.2

<\ O (Mode) X
O Fig 19
N\ £

From (1), d >0;~hé‘:née hy>0. o
The area undenfHe curve is finite if 0 <h<l.
Y1y, at the ode z=a. .
F{;]r finisedqioments, the restriction on the value of b is more severe
than tha;(}ﬂst ohtained. For large values of |],
o @~ KTwr{(a-oy+ 71
~O 1
331 Q=0if r+2<1/bor, with r=3, b <3
The curve is shown in Fig. 19 when a>0.

Also, it ia clear that

7:18. Curve when the roots of the quxiliary quadratic are equal

With the notation of §7-17, g=0 and hence >0, Also

]_dy @—x 1 _EI+C

E o bt batel
sCQ
Iz
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from which ~ y=gge e+ e) Woxp{—kil@te)}, (1)
where k= {a-+e)/b.
Put x4+ e=k/t?; then y= (0 et (2)
R
where =y, (I{ ) e, (3)

From (2}, y=0 when i=0—that is, when w=cc provided that
b1,

From (1), ¥ =0 when r——¢, {(v4+c>0}, provided that k-4, that
5, g4+ex= U,

The range is —esrs .

¥ 4 N ¢
&\
N\
Also, since the y-axis is the centroid vertical, then e 2R "< ow, Trom
717 (1), 2bc= —a; henee a is negative. Since o +c >()‘ $hen

20b+2bc> 0 or (254)»0}\
hence $<b< .
The vaiues of b are more restricted wheq\vic apply the condition
for finitencss of the moments, Now \‘

Q=[x & B}
0 that at the lwwzrib&ﬂﬂthnaysmgeg:cm —¢j, =0, For large values
of =, QN Kot
and G=01ifb< 1(2—1—3“},::;01‘ r=3, we then have b <.

It is easily seen{{‘&f}

A dy c
PR, Sl T (1 — iRy g rab g
P \ / dx ( )

Henece j;h'\:rad:lcnt is zero when t=0, t=oc and £2=1/b, that is, when
.r_.ob\.u: —¢ and @ =g, the last verifying that the mode is &=

"&(}‘B " o
i"{:" J ydz=1,
-

oX

we have from (2) 2kor [E8 gt gy |
0]

1
k N T —— =
or . (b 1) 1.

Lhis last result, together with (3), cnables ¢, to be found in terms
of k, bande.

The curve is shown in Fig, 20,
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Note. The above results can be deduced from the equations in

§7-17 by taking the limit when g=0 so that = Thus, on reference
to 7-17(2),
, a+te f gx ] kx Bk
lim | —tan={- —: |= =-——,
oL by elzta)] | elete) e wte
and (1) follows.
Y
l ‘n\
I KON
N\ ¥
| Yo i
] ) t‘n’s
I
-~ Ny
(~c, 0) (Mode) O N\
Fig. 20 ’:j\\w
‘\ v
7'19. Curves when the roots of the auki.liary guadratic are
unequal N\
—o; then the
1t is convenient 1o change tho leg%&hn E\J{Ir n 5]% of'g G then th
diffevential couation is X2
Ldy > ¢ M

i d’g { _x\bﬁ?‘-{-B g--
where, with the usual not\tlon,
1%‘3(25 1}, Buzbu"i'a'z(b' 1} ()

The new oricri_ﬁ\qq the mode if this exists; in several cases, as we

shall sce, thaudde is non-existent.
Let ami}&' be the roots of the new auxiliary guadratic; then

;\/ b+ f)=—By, baf=DBy. (3)

}’b\“ﬁll he sufficient to consider the general case when bB, is negative
80 that o+ f is positive. We take ﬁ' to be positive; Lhen e may he

positive or negative, with || <f.

From (1}, 1 dy pa -pﬂ
ydi E-a E-f
: 1
where =
b{f—o)

then p has the sign of b.

12-2
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The differential equation takes the two distinctive forms:

Tdy  px N i

S 4
T A w
Ldy pa B
and S T 5
vl E-a pof @
In (i)-(iti} following we consider the form (4) and in {iv)—(vi} the
form (5). ~
(i) O<a<f, b>0 A
1% o —pt LW
rom (4 L o I (1 A O N
ol N 3

where y =1, when £=0, that is, at the mode if it c'x\ht‘:
Here, p>0 and px>0; hence y=0 when_£Zd7 Alsg, =0 when
£== —ooif p(f —a) >0, which js satisfied, Tharenge is —w s E<a.
For finite area under the curve we mughhave p(7--a}>1; thus,
O<b<l. s,

Tn terms of £ = [b(g— o) (£ AL +4)7 4]
At the upper end of the range (g.::'ci'), (=0. At the lower end @=0if
247 —p{f— o} <0; thus, with =3, 0<b<y.

TFrom (2) awgy)dgﬁ@@ﬂ;gﬁ%&—gﬂb) ; hence e is positive,

From (8), dy '%’E: X 5)“‘"'1 . £y -ré-1
= AT [ -2 I—= '
dg{m>baﬁ( o) ( ﬂ)

The -axis wilkbe'a tangent at 4(x, 0) if pa > 1, that is, if
e B <11 1,
The gradigut-0f the tangent to the curve at 4 will be finite and non-
Zaro ]_t: P, that is, if §{a=1+1/b. The tangent to the curve at 4
wil b:q};é’rpendicular tothe z-axis if pee < 1, that is, if 0 < gl < 1+ 1/0.
The curve is shown in Fig, 21 in which €'V is the centroid vertical,

t‘)l 15 the origin for the (£, %) coordinates and a1,
N\

\”\} Vi) £>0,a<0, f4a>0;b<0

Here p is negative. Write &, = —x and p, = — p, where ¢, and p, are
positive; then > a,.

From (4), y=y0(1+§)mal (1_%)%9' N

The range is —a«, <£< 4. The moments are finite,
From (3), B, >0 and B,>0; hence, from (2), a< 0 and b, > 0.

From (7, d_?]___yug | Ermal £ymA-1
dg‘balﬁ( +5=;) (1“) '

P
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If 000, > 1, the gradients at £= — o, and {=f are zero; if p,a, =1,
the gradient at £= —o, is positive and finite, and the gradient at
£=4 is zero; if pyoy <1 the gradient at {= —a, is infinite and the
gradient at =7 is zcro, finite, or infinite according as p; £> 1, =0,
or < 1.

The curve is shown in Fig, 22 when pya, > 1.

N

o
’,"\\
b 4

c O )
(Mode) ¢ §§5 (8, 0)

o] )

~ (Mode)
A\ Fig. 22
(i) ﬁ?»(l;\ax<0; b0
ErGn (4), with &y = —a,
N/ £\-ra g)—pﬁ
vmn(e) ()
Here p>0 and the range is —a; <£< /. The ordinates at the ends
of the range arc asymptotes. _
The differential equation shows that dy/d=0 when £=0; the
point (0, y,) is & minémum turning-point. N
We consider the case when a, </ the procedure is gimilar when

%, > f. Then, from (3), B, <0 and B,<0; from (2), >0 if 0<b<}
and g <0 if 6> 4.
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The area under the curve is finite if 0 < poy <pfi< 1. it is casily
seen that the moments are finite for, in terms of £,

Q= b | ey (1+2) 7 (1=2) T,

so that @ =0 at each end of the range,
The curve, when o, < # and b }, is shown in Tig. 28.

N\
Oy
o
N
(44
h
f——
(=, 0 {5, 0y
wwrw . dbraw ib .
K\
\\5,/
4 & ,\ y OI. (a’ 0) C (!81 0)

D Fig. 24
(ix')\eg'a{ﬁ, b<0

% Q’i&\e now consider the form (5) of the differential equation. Here
son<. Then, with p,= —p,

\\; y=Clf—a) ™2 (g —E)»,
where (' 18 a constant.
The range is a<£<f. The line £=2 is an asymptote; also y="0
when £=4. Further, from (2) and (3), ¢ < 0.
The condition for finite area under the curve is 0 < <l

Asin (iif) it is easily seen that (=0 at each cnd of the rango.
The gradient at {£,0) depends on the value of Lm[(§—&)™4-1].

: . E—+#
When p, 8> 1, the gradient iz zero. The other cases, p, f=1 and

py f< 1, follow as before, The curve, when P18 > 1,is shown in Fig. 24.
The mode is non-existent,
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(v) Ga<fg b>0
Here p > 0 and, from (3},
y=C(E—a)(B—E) 2.

The range is 2 <E< A, The line £=4§ is an asymptote, For finite
arca under the eurve we must have 0 <pf < 1. Also, from (3}, B, <0
and J2,>0. Since the centroid vertical lies between £=c and £=4,
then ¢ <0 and, if &, = — &,

blot A= (2b—1); R
¢\
hence b > 3. Also, Q=0 at cach end of the range. O
N
RY
7
N,

0, (a5 0) \;r}-:j'\uf'dl&rauli@:'@ﬁ‘y_m'g_in
AFig. 25
{..,t\\
The value of the gradient at §=a depends on lim{(f—a) pa—t],
PN Eeor

Now, pa=ph.23abd hence, since 0<pf<1 and a<f, then pa —1

i nega.t-ive;.a,écoféjngly, the gradient at (oc,f)} is i_nﬁn:ite.
The curisééé shown in Fig. 25. The mode is nen-existent.

.'\
(vi) 20, #>0;6>0
iﬂ'm‘é p>0 and, from (5) with o, = —2,
o= C(E+oty)~2 (=)

The range is —eo < < —oy. The requirements for finite area under
the curve are —pa;>—1 and —play i< -1 or poy <1 and
P(B+a,) > 1. The z-axis and the line §= —a, ar° asymptotes. ;

Taking the case f>o; we find from (2) a-nc% (3) that B, <0 fmd
B, <. Also, since the centroid vertical must lie beiwuecnl — oG an
—a, then a > 0 and consequently, from (2) and (3), 0<b <y

The curve is shown in Fig. 26.
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{vil) A=0
We take the centroid vertical to he the y-axis.

From 712(7), 68,=6+9. Then the diffcrential «quation,

712 (8), becomes 1dy q

yde at—gr—3g°
where ¢= 20’,8%.

v N\
T A ¢
| O
N\ @
I e
a
N
2 )
»
&

" ( - “1: O‘)xt‘gi‘; (.Ss O)
Fig. 26,84 ¥

O
™/
\

www.dbrauliy rg.in

A
.\\s,l
P4, (-2, 0 O (# 0
P\ Fig. 27

Wefiist consider the case when ﬂ% = pg/o® is positive; then ¢>0.
The'\}oots of the auxiliary equation are of opposite sign, say, § and
8y, where / and o, are positive. Also, since f—o =g, then f>a;.

\\ We now obtain (I L8 )—p (1 x):p
y Y¥=¥ - -
! oy I
where p=g/(f+a,); thus, p>0. The range is —a, <z <p. Also,
i =F} whenv=4, and y=co when z= — ;. The mode is non-existent,
for it is easily seen that dydz+ 0 for any point within the range.
For finitc ares under the curve we must have (< p<l oor
9(=f~o) <f+oy, which is satisficd. Further, it is easily scen that
g=0. )
Tho gradient at (2,0) depends on the value of Iim [(#—x)-1] and

. P Eind
18 consequently infinite,
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The enrve is shown in Fig. 27; there s no point of inflexion.

IT ¢ is negative, that is, if 4 is negative, we write g= —gq, where
g,> . Also, if €= —x,, the equation (8} becomes
Ldy &4

5595—1“5;2_9151-302.

The resultant curve is simply the reflexion of Fig. 27 in the y-axis,

7+20. Example of a Pearson curve

The data with which we ghall be conecrned are derived from experi-
mentst made by Reed and Mcleod on ‘the absorption of underwater
sound by substances in process of solution’. The time, £, in seconds, s
the independent variable; for convenience, we write X =44 in Tab e17.
The measured quantity is denoted by y, the values of Wﬁicﬁ for a
particular experiment were kindly supplied by Dr Recd “A smooth
curve (Fig, 28) was drawn with refercnce to the poitltSX , ¥} and the
values of y, read from the curvo, are in the second ¢olitmn of Table 17.
According to the experiment, y =0 when =X ={the curve indicates
that y rapidly tends o zero beyond X =130

The moments, p,(a), ate first caleulated “yith reference to the line
X —aq, where a=6; the deviations—dengted here by % to avoid con-

fusion Jater—are given by = x‘@%glbra alibrary.org.in (0
and arc shown in the third cqlur;l’ri of Table 17. ‘
From the sums at the fegtoFthe columns we have the following:
N:}:y:33.g\'\‘ Tyl = — 1105, [yy%1=292-25,
[4%)=190-55, [y7]=6814-25.

PN\
Then N ﬁ=[~?{%}= —0-334,
\:"\l. i
N lyr]
O e =23 5520
'\
W [7°] _ o e
\/ Hala) = N =51707,
[w7*] _ o5
fa(t) =5 =205-87

The values of the principal moments are now calculated by means

of the formulze 1-06 (12), (15) and (16); they are
=0t =818, iy =14512, f1=210-395.

+ R. D. C. Reed and T. €. MoLsod, Nature, Lond., 175 (1935}, p. 809.
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Table 17 . Absorpfmﬂ of underwater sound
% vt
" 4 — 5 . valc.
X y 7N : wr + - ! (“*“r_
I 17 — B\ — 85 42-5 — 9125 1062-5 1-58
2 32 NOU - 128 512 — 2048 s1g-2 302
3 383 sd — 1135 3165 — 103-95 a11-85 398
4 4-2 {.\{,—2 —_ 24 165 e 33-6 872 4-31
5 4<2\"Kw — 425 425 — 4-25 4-25  &H
6 40~ o o — o o _ 0 3:82
TaN3d4s 1 34s 345 3-45 _ 2.45 397
- 8”\; 2.8 +2 o0 —_ 11-2 29.4 . 44-8 264
S 20 +3 60 — 18D 54-0 — 162:0 201
1] 1-4 +4 56 — D94 29.6 _ 1584 1-38
11 09 +5 43 — 225 1125 — A62:5 0'92
12 06 + 36 — 21:6 129-6 — 777 0-62
13 0-4 +7 2-8 — 196 137-2 _ 9RO 0'3'3
14 025 +8 20 — 16:0 1280 — 10240 08
15 01 +9 09 — 81 729 — 6561 008
331 34-45 4550 29225 74965 5591 6814-25
—11-05

+190-55
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From these ﬁ;‘asg=o-5a3e and  f=0-3176;

_f

‘Then, feom 7-12(7) and (8) we obtain the following:
A=T7086, B,=13-10, b =1-389, b=—-0-1674.

N
f . is the abscissa with reference to the centroid vertical (C'V in
Tig. 28), the auxiliary quadratic is <e.Y
—0-167422+ 1:3802+ 13:10=0 O
or a2 —§209x — 78:25=0, ’.j: 3 (2)

of which the roots are
—5621 and 13-920.

Since the mean, 7, is —0-334, the position ‘Q}\CV is given, from
(1}, by X — 5666, that is, 00 =5666. N

The Toot z=—5621 of (2) is associdted with the point 4, in
Fig. 28, so that 4,0=>5621; thus Apis very close to the origin O,
exact identity being hardly expeeted in the circumstances of an
involved arithmetic computationsyw dbraulibrary.org.in .

In torms of the notation of the differential equation 7-11 (4} with
OV as y-axis, the mode, O,fivgiven by z=a= —by; thus, in Fig. 28,
0,6 =1-389; also, 001;€2-77. .

If ¢ denotes the ahscissa of a point on the curve with the mode, O,
as origin then thexdots of the auxiliary equation expressed in terms
ol £ are ,\\ %— _5621+b, and 13920+ b,

O~ 4232, f=15309.
or '\\“ % B

2 8

Thewalues of b, « and § show that the curve belongs to th‘c category
t;;gatbd in general terms in §7-19 (ii); thus, with the notation of this
gon, 0, =4232, f—a=19641;

1 1 : — 4.
P N e —1293 and p,f=40680.
B sz M '

From 7-19 (7), the equation of the curve is

e

wherc y, is the maximum ordinate (corresponding to the mode).
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In Tig. 28, A,0,=4-232; if B, corresponds to the rout 2, then
0, B, =15309 and OB,=19-586; B, tes outside the range of the
figure,

Since pya > 1, the theoretical curve given by (3) touches the £-axis
at 4, und B,.

Now, 00, =4-277; accordiugly, the relation between the X and

£ ahscissae ia X—fi4977,
Thos, when X =<1, £= —3:277; when X=2 £= 2277 and SO,
The values of y, calculated from (8] with these values of Z/hat is,
for X=1,2, ..., are given in the final colwmn of Table IT.,;gf\li\éi;mrre-
sponding points are indicated by cireles in Fig. 28, W >

It is seen from the figure, or by comparing the sceend und last
columns of the table, that the theoretical curve (3 aii‘d the sinonthed
curve are in reasonably pood agreement, O

The formula (3) may then be regarded as @nlxﬁarizing Lite results
of the experiment. AN

P
&
4 &./
>
:\ »
P D
¢
L
¢ :\'Qtl
\V
\‘../
O
QN
~
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CHAPTER 8
CORRECTION OF STATISTICS

8:01. Possible rejection of an observation

In §$2-20 the normal law of ervors was tested against the aggregate
of residuals which, in the circumstances stated, may be regarded{\
substantially s equivalont to the errors of observation; it was sgerl
that there was a close correspondence between the theoretical ‘di%-
tribution and the observed distribution of the residuals except I the
case of a ymall number of large residuals, this number beingﬁ’g}newhat
greater than that predicted by the normal law, a featup@ot’ uncom-
mon in a series of observations, \\

For purposes of explanation we shall suppose that all the measurcs
or obrervations but one provide residuals in genetal accordance with
the normal law and that the exceptional médsure, M, leads to a
residual which appears to be ‘abnormalif’ylarge. The normal law,
of eourse, allows for large errors, hut the jprobahility of their occur-
rence is, relatively, very small. Theresafe two possibilities: first, the
norimnal law may just be & ver ",’g‘él‘fﬁﬁﬁmﬁﬁﬁmiﬂng-“ﬁth a slight
failure to predict the frequengysof very large orrors; secondly, an
exceptional measure, such q-gjlf , may be the result of some ‘abnormal’
combination of circumstdnees, such as would occur if the errors
prodliced by the var'o@dgencies were all of the same sign. It may
be that, after the resicﬁals of all the measures have been obtained, the
exceptional measuve, M, can be repeated, as when measures of
stellar images oii’a photographic plate are involved. ‘On the ot-l.jer
hand, M mdzwépresent a particular measure of the right ascension
of a sta 'h\b‘ei"ved with the meridian circle, in which case no serutiny
of the{abtual observation—which is now past recall—is possible,
althgiigh the details of subsequent arithmetical computation can be
sebiegked.

\_UWhen the number, n, of observations is small, say, n="6, the
rebention or suppression of an ‘exceptional’ measure will clearly lca:d
to a considerable variation in the deduced arithmetical mean and in
its standard or probable error. The computer, "_‘F'hﬂ is freque'nt-ly not
the observer, may then be greatly tempted to reject what he imagines
to be a ‘discordant’ obscrvation, forgetting, or Pel'h‘f'l?s being
unaware, that frequency is not gtrictly related to probability when

the number of mesasares is small. The practice of experienced ob-

gervers is to retain anh apparently discordant measure when there are
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no indications that the eircumstances in which the olseryvation was
made werc other than normal; in other words, personal prejudice
shauld not be exercised, when onee the obscrvations hive heen made,
in suggesting the rejection of a particular measure.

On the other hand, it has beeu claimed that a discordant measure
is the vietim of abnormal circumstances, andd, [or this reason, should
be rejected provided that the degree of discordance is subject to some
eriterion. Such a criterion, claborate in its application. was firss
proposed by Peircet; a simpler criterion for the rejeetion «of bae
doubtful observation was later given by Chauvenet (op. cit . B64),
aud is described in the next section. \ \J)

Ny

~

8:02. Chauvenet’s criterion N

H % is the modulus of precision of n measures e probabiiity of
the occurrence of an error « is erf (hx); henece the probability that an
error will exceed the value z is {I —erF(}mr}k go'that in general, pro-
vided frequency isidentified with proba Lilitg, The number of imeasures
with errors exceeding x is E=n{1 —cxf thao)I7 IF K < %, then u measure
with an error o (% > ) is to be rejected,on the grounds that the prob-
ability against its ocourrence is greater than the prohability in its
favour, Thus the limit for reje€tion of one doubtful ohservation is

given by www.dbray] {?I_‘_aggf‘eg §)§,“: 1,

. ¥4 2n—1
from which ‘ i'jt\ erf (hx) = 5 (1)

With A and » Khdwn the tables of the crf function enable us to
deduce the appfopriate value of the limiting error x.

To illustradé the procedure we consider the example given by
Chauvengtylep. cit. p. 562) relating to fifteen measures of the vertical
semni-digmeter of the planet Venus. The standard error, g, computed
fromyslicTesidualsin the usual way, is found to be 0"-572; the residuals
arg>1"40 and fourteen others ranging hetween —0"-44 and 4-1"01.
¢NFrom (1), erf (he) =0-96667; from the tables of the erf function,

\”\Jix-: 1:5047. Also, sinee h*=1j(24%, it is readily found that z=1"-22.
There is only one residual—with the numerioal value 1740—which
exceeds this limiting value of » and, according to Chauvenet’s
criterion, the corresponding measurs is to be rejected.

After this rejection has been made from the original series of
measures and new residuals caleulated, the criterion can be applicd
a second time and, possibly, another measure may fall under the
ban of rejection.

t B, P?irco, Astron. J, 2 (1833), 181; see also, W. Chauvenet, Spherical
und Practical Astronvmy (Philadelphia, 1891}, vol. II, p. 558,
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Whatever the theoretical justification of Chauvenet’s criterion
may he—and it would appear to be none too strong in the casc of a
small number of observations, for these would not give full play to
the arguments based on probability—it has the merit of being im-
personal and not subservient to the hias of the individual. 1t should
bé regarded al, best as an empirical rule, to bo applied sparingly and
with discretion,

One important point relates to the finally adopted degree of
precigion of the measures. In the examplo fiflecn measures have been
made and the procision of these is given by #="0"-572. This estimate
of the precision should remain and be independent: of the rejection

of & “discordant’ measure, although the rejection leads to what .igz\

hoped to be a more acceptable value of the unknown quantity.

T ox . j\rww brj@l_u Ibrar‘y_ogs_.ip{
0 AN (&, 0)

L Wig. 29

)
8-03. Sheppard’s corrections to moments

We supposc that, forra given ghatistical distribution t-%le range.of
the variable z is Aivided into = class intervals, each of width ¢, *;s-'ath
vy W), A8

their centres agthe points whose abscissae are x; (i=1.2, .
in Fig. 29, W§'assume that the distribution extends between ’H and K
whose ﬂbs"&snae are h=x,—%c and h=z,+%¢ 1n the typical (‘13'7:»
intervaltht frequency is R, P,, corresponding t0 the vertex I, with
abgciéae ,, of the frequency polygon-
e take the origin to be at tho mean ©
we &hall bo concerned with principal moments.
We denote the caloulated principal moments of order r by ., 50
that

f the given distribution and

S, RoP4] M
Hp= v EIRiPE L&k,
Tt iz assumed that m, is evaluated

where & iz the total frequency.
¥ y d 7 particular, mo=1 and

according to the procedures of Chapter 1; in
ml_—_()_

Q
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Let y=f(z} be the equation of the curve in Fig. 2 representing
the irue distribution of the varinble v such that y=0 wiwn w=4 and
z=k; also let F(x) denote the true relative distribution function so
that f{z}) = N F(x). Then the true principal moment of order r, denoted
by u,,1s given by

M:J “.a;r_F[;z'} elr. (2)
S

The object of Sheppard’s eorrections is to deduece the values of
the g's from the caleulated and known values of the m's

Let the ordinate of P, meet the curve at ¢4, 5o that R, ‘),.—\‘;\_nf[ xg);
then, from (1), ) O
el QP ‘,u‘f’

m=-5 2y, + \

hy x y
L
In the second summation, ¢, P, can be posiiye or ne gative and, if
the subdivisions are small enongh and ¥ is lagby i he ﬁpmnd summation
may be expected to be negligibly bm;vlak\«ompfued with the first
summation; neglecting the second bummatlon we have

s,'

", Z’FI@ 2?{:}’% ) (3}

Now, with ¥tk ﬁb]cﬁlé![f&'ﬁagc?e%f breadih ¢ and height B, (=#:)

can be equated to the '1rea under the curve hounded by the ordinates
r;—ic and z; + de. J]lms

p. ’\/ t-de
N oy= j Fle) de,

\
O it

or, on wri}:-if:@% =2+ £ and flz)= N F(x),

%

o\‘,

@)

& [t
'%M; ey == N Fle,+ £y dE,
\ —te
~\E>1nce | €| is small, then, by Taylor's expansion,
Flot = 3 & o, @
pmnf)
henece cy;=N| ¥ o Fim s
;=1 — .
I |

If p is odd, the corresponding terms on the right are zero. Then

cy,=2Nz 2

Flafp,
( 1)] ("CSJ;
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in which p takes even values, including zero. Thus for p=0, 2 and 4

we chiain o o
yi=N [F(x‘) + ﬂf"“{xi} + 1830 Fi"{'xf):l .

This xuression is correct to Oe®). -
Henee, (3) becomes

¢? ot
= rat P, il g LTI St By, ).
i, IzF{xz}'f'Q_izx{F (311}'[']92[}2-{'% {.T )
N\
W introduee the approximation .
® <\
S () = f ) o)
® |\
N
2 ot AN 3 i
than -;-pg.r,:fxr-p(x) dx+§—4 ZTF”[:L‘) dx_]_lm a:rFifF{L):{ix’ {b)
the Hits for the integrals being b and 4. A
By (2, the first term is g, Now \ {
o () do = [ ()] =7 thJff
bl bfarss ar i )
=[x F'{x}— m"—llf\% g?}& + rfraglf?J{%}'b’éﬁfﬁﬂﬂc. (7)
Similarly, L N
- ’ {"‘\\

J B F(x)de = [m"f’(@)‘ﬁ rat LR ()
A )2 () — = 1) =2 F )]
A\

\’:\M trap=1l.r—2.7r—3 |‘:?:"_4F(93) dz. {8}

\"4 *

We E“H‘ém\ assume for the present that 2 %nd _k are ﬁml.s_:. 'Il}1e co}n-
ditiqﬂﬁ‘iﬁlp]icd in applying Taylor’s expansion in(4) requxrg i 1:13_113 the
: -”'?ls‘i'ﬁives of F{x) are finite and continzons in the range. We abmm}ae
?lﬁther that, for relevant values of p, FP{x)=0 at cach end' of the
range or, in other words, that the curve has elose contact \\-'1’6.}1 t}},e
saxis at #=4 and ==k Accordingly, the integrated terms 1_*;: (:&
and (8) vanish; also, by means of (2), the integrals on the rlgh‘i—i v:lv
sides of (7) and (8) are expressed in terms of pi,_g and jt,_s TESPCOLIVEIY.

We then have, from {8),
2 [ x ci_ l':}
M, =g, +r(r—1) ;qﬂ-r_a—f' ror—lr=2.r=31gan e ®
AC0
13
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We then have—putiing+=0, 1, ..., 4in suceession, and remembering
that by definition m,=1 —the following resules:

Mg=ga=1, wm =g =0,

El

ey = fiy 12 W=y,

a

o® ri

Py fhy 4 ;} fat ;0 . N\

N >
TFrom these, remembering that ¢ is a small quantity, w \ Motain by
& familiar reversion process \/

%
S
7

R
po=mp=1, p=m; =01 s

po= My — TyCR,  fym= TN ‘}\\. (10)
Ja= iy — Sy A 2%“\‘({3
If required, we obtain from (9) x\ “
M= gc=’m3 (11)

The true principal moments,” ‘m;, are thus given by (10) and (11)
in terms of th%ﬂﬂk}%ﬂ}%hm@?&itﬁr Fline ealenlated for the given statis-
tical distribution; the terms involving ¢ are Sheppard’s corrections.

It is to be remembeyed that up to the present we have assumed thab
the range is finite, And'it has been shown that, if Sheppard’s corree-
tions are applicable, then the ecurve must have cloge conlact with the
z-axis at the ofidls of the range.

Considex, 0% the casc when one or hoth limits are infinite; the
vanishingiqf‘the integrated tevms in (7) and (8) requires that

\1::" Hm {2 F9(a)} =0,

& | ]~ o

\t]j’_rs implies that the curve has contact of & very high order with the

“\\a-axis at one or both ends of the range.

’ These scvere restrictions limit the applicability of Sbeppard’s
corrections to distributions which have the properties mentioned
and, in particular, to distributions which have the characteristics of
the normal function such as the Gram-Charlicr series described in
§7-05.

For many of Pearson’s curves discussed in $8§7-15-7-19 the restric-
tions clearly are not satisfied, and in such cases Sheppard’s corrections
must nof be applied.

The legitimate application of Sheppard’s corrections to a frequency
distribution was illustrated in §1-17.
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8-04. The correction of an observed frequency distribution

suined that thie obgervational naterial refating to a charac-
stic, x, i3 presentod in the form of a frequency polygon with a
suitahle cluss interval, and further that a smooth curve y=wv(x) has
been drawn to give the best representation of the frequency dis-
tribution. A typical example concerns the counts of stars according
to wagnitude in a particular region of the sky, the class interval
being, sny, 0m-2, The measures of magnitude are, of course, subject
10 errors, and, if these errors were supposed to be removed, we should,
obtait the true digtribution represented by the curve y=wu(z).

In the sequel it is assumed that the funetion u(x) representing the
true dictribution of a characteristic « and the function s(ghkcpre-
senting the observed distribution are continnous fanetiongwith con-
tinuone derivatives within the range of « given by the gtfistics.

Let £ denote the true value of the characteristic andits measured
value; the error, ¢, of the latter is then given by 8 \an;—t or

g=t+e. o (13

Let 2(e) be the function associated xy}j;li whe law of errors so that
the relative frequency of errors betweeme and e+ del is ¢b(e) de.

The frequency of true values QRRS ghar } eristic %g?ﬁeen t ang
t-+di is u(t)dt, and of these the fraguiency With errors AFEEIL € AL

74\

e+de iz 0 dide.

Change Lhe variables B to i, ¢; then, since by (1),
e85 gpgo—dnde,
P\ &(x, )

7\
the frequehey’ of the observed characters
and withlerrors lying between € and € +deis
~O° ulz—6) le) dzde. (2)
\I.‘.kic total frequency, #{x) d2, with observed characteristics between
n be obtained by summing the expression
+20. Henee

iatic between z and z-+ dx

x and x4+ dx, will the
(2) for all values of ¢ between —© and

v(x)=f°° ulz— ) ple) - (3)

This is an integral equation in which the functior.ls w{x) a-T’ld e
are supposed to be known and from which the function w{x} is to be

derived.
13-2

oA\

Q
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We now assume that ¢{¢) is the function associnled with the
Gaugsian law of errors so that
. oo,
Be)= | e ¥

AT

the standard erver, 4, being given by

1
2:—_ 4:
T o
h [ o8 A 5
From (3), E(m):%J wul{r —e) e~ e, A0 B
AT~ :v\‘\ v
) m , dru(x) 4 ™
Expand u{z—e) by Taylor’s theorem; then, - . alieing denoted
by u,{(z}, or, more simply, by #_, (5) becomes '\"\:"
XN\
h 1w, [ \A
vE)=— % w‘ e R e
S 7 VQ'\\J
o A\
= LD e
-\?T o hr? | W o

IT r is odd, the 1nLegm1 i3 Z&IO ‘lf;r is even (=2m], the integral is
Tim+ } or ¥ :‘;(;%’@ dbrﬂéﬂggaﬁ y org.in
{\‘(.’6)— . Mag

N hQﬁam [ aem?

Uy, {21

or, by mcans nf’(A) plr)y=Y, = _) ,
o

e,

in which ngtakcs the values 0, 1,2, 3, .
T];\ﬁmt few terms urc

,\
4 \ v
.\ “J
\/ Binee y is presumed to be a small quantity, the series in (6) can be
inverted by a process of successive approximations, We can, however,
derive the required results more rapidly by the use of the operator
D (=d/dx), for (6) can be written as

2 ot &
v(x):u(x)—i-{) gl )+—‘{— U, (ot + = #

19 el + ... (6)

£ ‘3!.._6

wla) = ebrDy )

from which ulx) = e~ 0% ()

or u(.r_:) =1}(a:) —-’% 1,‘2(3;) + (#5)2 Uf(a_)_ - (T)
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PR .
the general term is (— 1Ly (‘%) :uar(raf} .
2 !

The formula (7) was first given by Eddingtont; his proof is given
in the rexi section.

805, Eddingtoﬁ’s solution of the integral equation
The proof depends on the use of the operator . Now

w(x—e)=ulx) —eDulx )+2]JD2 {x}— .
by Taylor's theorem; then ‘\' Ao \
ufz —e) = ¢~ u(x), \,\'j.:"'
and conscquently, by (5) of the previous section, ' ,\\~ ’
v(m):i—fﬁc de e D ). N\ v (1)
NI~ .*t\\"
Now J.w o—hlst—0E g e *i {,uz.u}‘ !

5o that, if I is treated as & (,onstarlt m ( A

»(w) = DR uf;ﬁ}“&@ﬂmuwg ary.org.in
then uf) e _@21)2 v{@),
which lcads to the scr'ﬁs'\@‘}en by 804 (7).

8:06. Solution i m te»i‘ms of differences

We shall supfose “that from the smoothed observed curv
of #(x) are g E%qed for values of the characteric

& Lhe values
§ -3¢, x-—2, -6 z+6, +2, .,

Whel‘{«s i's a small class interval.
~We' denote the second, fourth, ... differences by Ag, Ay, o Then,

o, A= vimto)+u® & — o) —2v(x}
=ctry(w) + 75 2%
and A, = vz +20) — de(z+¢) +60(2) ~ do(z— )+ v(z —2¢)
=ctydx).
12A,— Ay P
_l%c'z_ 2 and  vy(®) a
Mon. Not. B. dsir. Soc. T3 {1413), 359,

Hence ()=

t A. B. Eddington,
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The first three terms of 8-04 (7) are then

£

This approximation will suffice for most purposes, 1! ihe fourth
differences are not well-defined, it will be suflicient. Lo 1ake

wlay=v{r)— 1A, ( ) : \ T2)
L\
On the other hand, Rddingtont considered a parliculg®\problem:
‘The effect of Tted- cathl on the magnitudes of Nebulagt AL hich it
was essential and practicable to include terms up 1o the eighth
difference in the expansion for u(x). LV

8-07. Illustration of the correction of ‘ég.%f’equency distribution

The method is illnstrated with refegénce to the nunber of stars
with measured paralluaxesi grouped\bbiween the values 07010 and
07020, 0”020 and 0"-030, ete. (Table 18). It is convenicnt to take
07:001 as the unit so that the chss interval, ¢, is 10 und the abscissae
of the points W%%H@T?%Mbigﬁﬁﬁﬁbn are 15,24, ..., denoted by o3
in the firal: column; the correbpondmg freqrmlme s ave in the scoond
eolumn. From a %mooi:‘hed curve, which iz subject to some extent Lo
individual judgeme 1:@ the smoothed frcquen( ies are obtained; these
are showi, to the&arcbt unit, as w{z} in the third column. The first
and second dliﬁ‘m‘m e¢, &) and A, are in the nexi two eolumns,

The plobab}e crror iz stated to be 070096 or 9-6 in the unit adopted
the btaqglaﬁ}d?errc)r » 6, 18 then given by p=9:6/0-6745 or by p?= 202 9

Table 18. Counts of parallares

"“\ o Ji w{m) A, Ag w(w)
) 15 106 106
95 88 85 —18 +3 85
35 75 73 —14 0 78
43 82 5eE —15 11 57
55 33 14 —id 42 42
65 30 32 — 12 42 30
75 27 29 =10 42 20
83 12 14 -8 +3 1L
95 10 H - & '
t A. B. Eddington, Mon. Not. 2. dstr. Soc. 97 {1937}, 156,
I J Nassau, Mon, Not. 2. Astr. Soc, B8 {1028), 584,
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hence (pie)=101. The corrected distribution, u{z), is found from
the fozm.ula 806 (2) involving second differences only, namely,

‘1’.5 2
e =)~ 1(%)
The vabies of u(z), for « between 25 and 85, are shown in the last
columy, these may be regarded as the values of the distribution, to
the spproximation adopted, freed from accidental errors.
. N
8:08. ‘Improved’ value of a measure
From 804 (2) the frequency associated with the observed charad)y
teristic between # and x4 de and with errors between € and ¢+ d\(—:\s, ’

ol writing @(e) in terms of the normal function, A\
. N
h PR 4 '\..
— ul{z—eye e drde. o\
T Q)
Let # denote the mean error corresponding to t-b{ggbser\«'ed charac-
P - $
teristic between w and a4 da. Then \ &

o @ 7N \ v }
€ [ wlx—e)e P de= J. gl c) e de,
J = -',‘30’2.

or, by %04 {(5)—the integral on th@;}g}lﬁ heing ints I’?}}T@g 1?1} parts—

_ T 1 s 1= _ zsﬂd ’
£ \7?(4“,) = —E—M[-u-(x—e)f_\»‘?‘aei]_w—}-ﬂé Fwe " d—g{u(m—e)}de.

The integrated part on‘t@é‘r{ght vanishes at each limit. Also,

\;—E{u(x —€)} = —;;{%(50'- e}

N

N

& 1 4" 7!
henc 'i}"‘- = ——— g —e)e e de,
ence ‘;\\ Ev{ix) %h Jr da J\;w (
T I 1
01‘,,,33}%:8-04 (5), 6= T 382 wix) = _-‘HFE(J:) ’ W

distribution, the gradient for

# result ndi he smoothed
resultt depending on the s iy obtained with consi Gerablo

which, at a selected value of z, 1s usua
86CUTacy. .
* ) ¥
Eddington} defines the ‘1mproved value, &,
g —=x—E;

of a measure, x, by

(2

t Due originally to A. 8. Eddington and firgh pub]ished by F. W. Dyson,

Mon. Not. R. Astr. Soe. 86 (1926), 686. .
£ A, §. Rdington, Mon. Not. R, Astr. Soe. 100 {1940), 339
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thiz {s the best value to be associated with an individus! measure.

Lddington has peinted out the fallaciousness of applyicy :he correc-
tion, € to the smoothed distribution, #{x)—as has sonetines been
done—so as to obtain an ‘improved’ distribution; it hos o be em-

phasized that the correction has validity only when it is applied
to an individual measure.

As an illustration we find the ‘improved’ value o o parallax
measure between 07040 and 07050, 1f y denotes an czdinate of the
smoothed eurve, (1) can be writien as ~

_ 1 Ay

p— e gl L £\ ¢ 3
¢ 'u)g,r;\x '\~.\ )

O .
Here, y=>58 (indicated by an asterizk in Table 18} el approxi-
mately, Ay T—ad) 20 L0
Aw 22 208"
Further, #2=202-5. Hence, from (3}, 2= 4 3O +0°-003.
if the para Uax, p, for a particular star\\m the range eoncerned is
0”044, the “improved’ value is gnen\(mm (23, by p=0"044—€ or
0"-039. \9,

v

Ne/

8-09. The 1ntegral eq lalt:'
brauli r'ewy or .
From 8-04 ( 3) the fulldamchml in cgral equation in general form Is

o
- f wz— ) () dy. ()
in which y repla e\é

This can bc; \written in an alternative form. Put £=w—y; then,
for a given q&’dﬁ: —dy and (1) becomes

I T
O]:‘{I%)I&(’:iﬂ gEbyy,
D v(x)=j°° wly) iz —y) dy. @

\ 4 In general, if the functions v(x) and ¢(y) are known, the function
u(x) can be found explicitly in terms of an integral involving Fourier
transforms which will be considered in the next section.

8-10. Fourier transforms
We begin with the well-known double integral

L= e
ZEJ.o dg.[ W costle—y)dy, o
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where [(+ is « Mnction satisfying Dirichlet’s conditions and, in
pariicalar, ' - flxydw s absolutely convergent; the conditions men-
tioned are fﬁf:ﬁed by the kind of functions which we are likely to

enounter in the present connexion,
Fron: {1},

f"—lJ Jc.os{.r,' IJ f(y)costyd'-yldt
. TJdo l — o J

L . ' \
+—] sints flpsintydy dt.
7o - J )

A\
Donete the integrals within the brackets by Py and () res%;cc
tively, with the obvions properties: P(—)= P(t) and o — Q:‘—Q
Then | e ;
J=a | Pyt eittdi—g f Q(i){E‘*@%s\f*““}dt- @

2 lo

AY;
Set Fity=Pt)+iQ)= f [ Ry )
e
and F(—ty=P() _@Q(s) =¢ N f(y) ey
. _ ABraulibrary.org.in
Then (2) becomes =\

=5 ! j F(\N“‘“’JH—— J F(~1)eitedt.
2\,

1t ¢ i weitten for ——N\ the second integral it becores

J o
.~\/ J Fiyetiodi.
'\”' -
e\ | pw t .
Hence {\ f(x);z——ﬂ _ Fifyetv .
put Ffy=J(2) f*E) . Then, from (3) and (4), we have, on
l}.%tlng x for y in the former,
P ) ettt dy
f*{{,) '\,"'(277) J‘__mf(
1 F o gt ] (6)
o) = — —— (£) e~ dli.
and fte) 7@ J-w f

1 3 and
These formulac arc Fourier transforms and the functions f{x) &

F*(a) are said to be conjugate.
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8-11. Solution of the integral equation

From 809 (1), the integral equation is

A

)= we—y iy (1)

N —

Multiply throughoat by o/ and integrate from — = to 2 with respect
to x; then A

. {lnoc_- o 1 2\ ¢
i) ety s — b e o el N
DY) V. {—w 4 \\y )
0 \ /

For a given y the integral within the brackets on the f\T'r‘hi -hand side

isf u(E) e dE or J(2m) wk(L), by 310 {5]. Then@{’b by B-10 (),

—

A e

[ playetde=

¢ —a

A\,
2my et 27 *{%
V(2my ey =2mg*(1) “ \{l
hence 1 ﬁ:
V(27 Polefe)
and conzequently, by 8-10(6), ) e
W dbra Libig ‘01@ AN ; 5
gl g, 2)
jl“ ~)K)fgb 5*( } ﬂ? (

\ .
In general the integy id is a complex function and the solution,
u(x), which is & rc’«{({ ction, is the real part of the integral.

In particular Nf and (,’) ) are even functions of > and ¥, then,
for example, 29\

¥
N ’1 o : ]
?J*(ﬂ‘@” (Z?T)j a(a‘)(o&t.zdx-}-é--—}- [_mv;(x) sintedy;

the {:ﬂg\)nd mbegral vanishes and hence

o) VPSR T )
U ¥ )_Eﬁ J_w@(zr) cos txd.
Similarly, D) 2‘\(1—#)- [‘ik Bz} costrdy,

Thus, v¥(!) and ¢*(2) are even functions of ¢ and accordingly

L[ v
R(ﬂ?)‘:—J‘ v cosxtdl,
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812. Application to normal functions
In the ntegral equation

)= [ wlo—2) $l0)

we wssime that, in terms of the means x, and y, and the standard

deviations Jand o, 1
w(x)=— gte-mies n
A
o grlv-ygiee® {2)
“nd P =5 Tem &
Then, by 8-10(5), O
1 = Al g \+
i = ettt oy ™
bh (t) 27?_’3 —m '.’:.\
it \"
_em e E28 pos tEdE, )
gﬂﬁ w—cty A \
. . N
by %-11 (8) and setting =2 — . \\
Now, by a well-known result, A O
J.w g cos bE dEt\-—'«' ‘E’g""‘“a 3
—@ ww‘dblaullbralyorgm
Menees w¥(E) = - *.,_e Lttty
N
‘\\ _%gstg—‘atﬂm (4)

" 1
Similarly, ===

{ 2ar
x;\bti -
\"\'\ 1 ¢—$e* gost{m — 7y}l
.{\ 27
whe§3~ . 2= f2—o? and  ®=%— ¥
\@\m %o be noted that it is assumed that g>o. Hence, by (3),
] 2
SR _ a—im—ay) 1227
ulz)= % J2m) E

; : = d
Thus, u(z) is a normal function with @ =y~ ¥ 9 the mean an

« as the standard deviation.
If ¢{e) is the error function,
giveu by 1
gle)= P LIz

with o=y as the standard deviation,

— g,



204 Correction of Statistics 1812

then u(x) is given by

ua)=— g i
o \{2a)

where a?= 12—t

Thus the effect of removing errors fram the observed furetion s{z)
is to express the true function w(+) as a normal furction with the
same mean a5 #{x} and with a standard deviation, a, les ihani;ba-t
of v(x).

‘\ >
<O
. . R . \\ v
8-13. Application to the Gram-Charlier series W

We shall suppose that the ebserved function v(r) s Boen oblained
as a Gram-Charlier series and given, with a (h«l.gr' of noralion in
T-08(5), by )

s 7

ooy = L I: .{___l) ‘ln JU £ p—tem giizg?

£2n) i

where £=(z— )/ and the coefﬁueu‘c‘: b » ha\e been fuurd in terms
of the principal momenis as in 7 0‘? (8: also, Ay=10,4 =4,=0.

]J t
e S, ()
W W, dbraullbr@ry O;ﬁﬁwi )

By 8-10(5),
v¥(f)= _.r\l‘ﬂfo z j B, H,(£) e-s+itiz—sy) gy
134 —»

Y

:3»"_ —3a2 zz_ﬁxqu f H Ve~ Jig— r;z”re: (2)
77

P

where T'= a,%
Let [ n\d\lote the integral in (2); then, on putting = £ - T, we have

O _
\~; —2n
\"\, Now, by 7-07 (4), H,=fH, 1-%2—
o dH,_
hence Iﬂ:J._m [?Fan—“E?' '—:| Wy T1,_ 1

= —[H, e )2, 471, ,
The integrated part vanishes; conscquently
I,=T1, |
Hence L=T"I,= (2 (ip5)»
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and vty = l e~ TR (51",
J(2m)
Also, when () is given by 8:12(2), then, by 8-12(4),
1
=)= -ttty

By %11 (2), the solution of the integral equation is

i) = i B, 0" 41 o —Rabi? itim—zy i) K ’:‘\‘
P —& \\ 3
"\ “
where 2f= %~ g%, R ‘T”}
St i X 4 x“
Pt Xez-n,+y, and S=-—iXj? &x} '
L 4
AN
then ulz) :.i o~ i Xt EBn(if?)“fﬁn g—hz(r—.g@y
o S
D
1 A
Now write  Flo)=— —e3%%"  and MBuli—5);
ow write  F(x) Zd@m ‘;;; (
& . B
then ulx)= ng} =B aﬁ}“L oy, (3
N ("'ﬂ.) w‘yﬁv Fauli brary.org.in

Let &, denote the integral; 1:{1911

a—1 -—az?agd
] (o

\\”' 1 od't ")
’fté‘ L1}, +-——J n_-aﬁd?}*_b}{ﬂ.—l'

x \
The 111teg{Qt-ed part vanishes; hence
\\ ! @
'\‘ K, bKﬂ_1+ — K, 5
/

\/) . 1 X l_ ;

Now = el

where 7=Xo.

i ¢
Also, K, =/(2m) and, by (4), Er=7 fo-
Again, from (4},

72 1 ___1{‘_)_- 2_ 11
Ky=FKy |:('.:cx,) 052]_-(595)2“ }
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r_[‘h.(_‘-SC I'CS'L]].tS can hC written Rk
K. /K ——IH' Wik, — : it
! . Yoy . ST
the=. 17, 2 B (it

1
also, they suggest that Krl.-"f\'u:-li-_---); iH 7). (5}
iz

T[ this formula holds for r=n— 1 and r—=#n --2. we slod! show that 3
halds for r=n. From {4) and (3,

A
KiE=" 1 etf |+ e
MO i | a1 pilT) |+ A FE) RN \';‘~\
1 o\
= Gy [TH, A(7)— (n— 1) H, _i7]] AN
‘&
- Hfr), by 707 (3 )
_(t'-a:)“ A7 by TO0T7 (3,

) A ,
The formula (5) holds for =1 and r-= 2igmncee it Lobds o r==3 and
consequeutly for all positive integralNzities of n. Henee from (1),

BGipr K=y (-1 Vi )
wN ainll "
and {3) hecagmgs, d br‘aulibl:a}}y‘_org_in
1N (— 1) A, .
wE) =-—A ety Il Ty , (6}
o 4i{3a) [ +43' ! A7)
+ 8 )
¢ N 1
where ‘ \\ TEE:_(“"‘%'HIQ)-

The formpl% 8) shows that ufw} is a Gram-Charlicr series with the
same cooffieients, 4., as in the series for v(x), the normal function
&ss%atgd with ({2} being

N 1

F‘ =-— —l =+ i 2,'2322
\ () . .-"(2;7)9' {e—ytygiin?.
O
TN If : . 1 .
\/ ${y) i the error function - —. — ¢ V27t ghen y,=0 and the
T \j{2m) )

funetion F(x). is a normal function with 2y as the mean and o as the
standard deviation, « being given by o2— 52— g,

8-14. Correction of vectors

In Fig, 30 O7 is a true vector of magnitude r and components
(&, 931';) Wlt'? respect to the reference axes 0.4 and OB: 018 is the chserve
veetor of magnitude o and with components {x , with respect ©
the axes OX (drawn through O7) and 07, )
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We shall agsume that the law of errors is the same for the two
eomponents £ and » and consequently for the components @ and y;
and that it is given for each, independently, by the normal funetion

o
@le)=-——r " Now TR=x—r is the error for the z-component of
ST
0% and 23 =y is the error for the y-component. The probability that
an zrror will lie between x—r and x—r4da 1s ¢{x—r)de, and the
probability that an ervor will lie between y and y+dy is $(y)dy.

Frnee the probability that the observed vector will have components N\
betaeen o —» and & — v+ do and between y and y+dy is i ;\* )\ ¢
h 8 2,8 \} )
Y S f.:cd-q. g W™
7 ' &N
8,39 A\

[, <
www dbrauli brary . org.in
=y i

L NFig. 30

0

oo
Now, if 8 is the angled§OT, then
(3';;)"2_,_ = §T2 =2+ p?—2prcos b,

Hence the r"(}i;fabili’oy that the observed vectgr will have & magnitude
between Q&aﬂ p+dp and lie in the sector df is

.‘.\’:‘;‘; A2 T o

,..\~ 7 _ e"h (73 |- pi-20r 208 pdpdﬁ

\ 3 i

Further, the probability {dp that an assigned true vector OT will
give risc to an obgerved veetor with magnitude bet“"ffen pand p + dp,
and irrespective of its direction, is obtained by summing the previous
expression for all valucs of ¢ from O to 27. Thns

tap= 2 et dp fem%msﬂ{w
T 0

— 2h2 0% pdp Io(2R%pr),
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where Zy(f) 1s the modified Bessel fanction of zero ordir defined by

(2)

Suppose new that N, the number of vectors, is lurge. Vv a given
value of 7 the frequency of true veetors between »aned v is Nf(r) dr
and the corresponding {requency of observed veetors with magni-
tudes between p and pidp iy Nfir)dr&dp, 1§ XFipidy i thgsotal
number of veetors observed to have magnitudes betsween ity +dp
for aif true veetors OF trespective of their direetions, thmx \

\
¥(p)= f ¢firy dr <~~’g
0 EN
-
=2ipe-t | L) fA T . 5)
0

~NY;
If the function F{p) is obtained fro :t}\lc measures, then (3) is an

integral equation which, in principle) dehibles us to derive {he relative
frcquenf} function of the true \'ccfars

In general, the integral equatien is insoluble. If, however, f{ r}is
given & particular form whighdeads to the evaluation of {he integral
in (3), then \\\E‘Wﬁﬁ&%ﬂm%ﬁtﬂiﬁ #(p); if the latter proves Lo be
substantially the funetign ohtained from the measurcs, then we can
infer, conversely, thgit}f 7} is given by the asgumed form.

Iff =Are¥ "“thcn the integral in (3} can be evaluaicd. Since
firyis the Il’:‘[dfl‘\«}s requency then

\ f Jirydr=1=A4 J re iy
’\..

fr O\Q\w’hmh A =242 The assumed funetion is then

e Sir)=2p8% o 550 4, (1)

\\3 ) Then, if we write Hi=}24 2 {8)
and put y for 24% in I, (3) becomes
Flpy=4h28% e—h*pzf rlofyrye T gy, (6)

]

Let K denote the integral; then, hy (2),

2‘ qzn?&n 1 g—H2%2 dr
o0 2(nl)E
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Noaw Jo P P e dy:ﬁi}ﬁ :t2n+1 et (it
L,
EI—Iz?E g?’b. N
1 = /2\"1 1
Henico K=Y {T=] = e 7
(=32 (452) w2 )
Henee, replacing y by 2k2, we find that (6} becomes
2}"2/5)3 PEFCIL)
T 7 —hEg g2 '
'F (p} H2 p e 4 ? P '\“\’
or, if b=y, F(p)=2k e % O (8)

S

Thus, F(p) is of the same analytical form as fi. O\
Conversely, if F(p) is the observed function given by ¥8) in which
k is supposed known, then the function f(r) of {hésrue vectors is

given by fi =28t N
where, from (5} and since k=kf{H, \ ’\ :
2z, \J
LR (9)

= —&4&
B2 ok
in which it is necessary to assumé?ﬁﬁ‘éét%@%libr‘ar'y.or‘g.in
"The resultst of this section aré due to J. C, Kapteyn and P. J. van
Rhijn. AN
\\ N
815. Correction’di the mean of the observed mag,
vectors ()
In some plfblbi{;ms the mean of the obscrved magnitudes 01‘: veolors,
denoted\ly g, is the starting point of & specific investigation. r_L“he
value uf%\: suhject, of course, to eITor, and the object of 1his section
is i-Ofi)btain the relevant correction S0 a8 to obtain the true mean,
#, £0ybe used subsequently.
3t is assumed that the ©

expressod 83 g g4 fRp et 240 e I (L)

nitudes of

hsorved relative digtribution can be

in which the 4’s and &’s are Known. o
Accordingly, the function representing the true relative distribu-
tion iz given by
Jr)=24,817 e—Br L QA Rre Pt L,
where o= 2R (B2 — K, ote with k> K-
T Ghroningen Publ. no. 30 (1820, p. 44.

14

N
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Then -r=J vf{v)edr,
1

For a particular term in Fird, with constants 4 and 2

™ " 2, 4.5
J Tf(r)dr==2.45° ’ N }\-,I .
] Jo Zp
. -oamid] A, |
Hence F=X J|_1_|__ 240 -
RV A N
. _ Nmidy A, 1 )
Similarly, S St i N A\ N
milarly £ 2% },‘:24— i ' O
Hence, if ¢ denotes the eorrection to be applied ta';.g_;_}i].]?’m
_ ""\\o
r=p+c, QS
where €= — \g(filai + ;’12':;?}'{\. ) {2)
1 NO
and oy =—-—{ ) ote, (3)

kl )‘J(,Jl

Now, in gel\lﬁﬁ%& T cht; lpi; &{}gn;gg;% aypair of 4, and &, , then
Ny A
i\ 2 2 i h2 2
e M=k =LA (h2 12
from which > k;,\:}éce k> k; thus, the &’s are all positive,
{ o

and hence

Further, &.chgj Fip)dp=1, we have from (1},
N Jo
":'{‘f\“' dy+Ade4 ... =1,

O
Ert%sié’nt]y, ono term in (1) is predominant, say, the first, in which
cget»}is negative so that the true mesn js less than the observed mean.

~O"
\/8-16. Relative frequency of the magnitudes of vectors ex-
ceeding a given valye
As regards the observed vectors, if S(p) denotes the relative
frequency when the magnitude exceeds p, then

~

S{p)=J

=34 . e—k;’,p’_

o

P

fral
Flpydp=224, 72 f peBdp
&
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Similarly, if {7} denotes the relative frequency when the true
magnitiide exceeds r, then

S{ry=%4, e 5",

The function e=#™* is tabulated in Appondix 3. The statistics can
then be interpreted very readily in terms of this function.

If, for exnmple, the function F{p) consists of one term only, then
A=1; i is then comparatively easy, by taking scveral values of &
and using graphicsl methods, to derive that value of & which best
represents the function S{p).

Yarther, if g and r, are the standard error and probable erfopy’

aszociated with the modulus, A, then O

1 ¥y £ i ("}«.

— =222 =4-395+3. 75

h? # (0'6745) o '\\
Then # is obtained from the formula 8-14 (9) so that \Y

~\J/
1 1 (N
{n

F:gé—4-3i}5r§. R

Ne/

817. Example of the correction éfthe mean observed magni-
tude of vectors ;www'd braulibrary.org.in
[n Table 19, relating to the total proper motionst of 100 stars, the
second column gives the ndmber of ohserved ma-gnitud.es botween
0"-G and 07-05, between PLO6 and 07-10, ete.; one star, with p=3"0,
is counted as } for t N range 07-25-0"30 and } for the range
(7300735, The t}.l.i'i"c:i;column gives the number N(p) of magnitudes
\¥;

;EED;IETIQ. T'otal proper motions (centennial}

AN Number S(p) )

‘.".‘ [ obgervod N {obgerved) (culealated)
SN om0 . 100 1-00 1-00
M\ 075 o 95 0-05 004
N/ 10 12 83 083 079
175 26 57 057 0-59
270 16 4l 041 0-40
2%5 18 23 0-23 0-24
370 8% 144 0-14 0-13
875 7 7 0-07 006
470 2 5 005 0-03

LS o

+ W. M. Smart, Sieller Dynamics (Cambridge University Press, 1938),

P. 216.
I4-2
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exceeding 00, 073, etc., and, with ¥ = 100, 1}
the corresponding values of &)

It is found by plotting

Correction of Statistics

the

values of k that a good representation of the values of

fourth column is obtained with k=048, With this
corresponding caleulated values of S
the details of which are in good

S(p).

The probable error, ryy 18 074 henee, with #

8:16(1) that £=0-525,
given by

or = —0"158, If, then, 7 is the m

From 8-15(2) and

L
== 2_(,1:*_/?_)

motions, the corrected meau, 7, is given hy

8:18.
From 8-14 (1), Eidp 1s
of a vector lies between
true vectors With" ﬁijﬂ
quency of vectors wit
and with true mag ity

N
L

. k%4
This expres#idn can be e
vectors wibh'true magnitu

ma-gn&&{@és between p

TN,
e

e N

\‘;

or, by 814 (1), =

where y=2h%p,

Ta
ghit

P 0" 158N
Sy

p)are given in the
agreement with the obucrved values

[8:17

w Towrth eolamn gives
» a& defined in the previeus section.
function e=#*#* (Appendix 3) for several
S{p) in the

valie of & the

izt column,

=0nd, wo findfrom
(3], the currec-ﬁ‘u‘;\:l, £, 18

2\l

ean valueafhe toial proper

‘Improved ® value of the’méghitude of an observed vector

the pr'r{l%ﬁ-bflit-}f that the observed magnitude

and it do. Also, NF() dris the frequency of
ﬁg:é c?wf" Yotween and #+dr. Hence the fre-

Hmeasured magnitudes between poand po-do

es between » and r+ dr is

NEfirydrdp.,

qually well regarded as the frequency of
des between r and r + dr and with measured

and p+dp. Hence, for a given value of p, the
meafi)v, of the true magmnitudes is given by

[“rrein
Fodo

fmgfm ar

re T £y Iy{yr) dr

.

0

L) Lyr) dy
[+

—
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We assume 1u the first instance, that

[y =24 s, (1)

:_
bt
o
)
=
=
=
=.
=
=
=
&
]
e
[#]
3
=
o
]
o
—
He
—
.y
=
=]
5
o,
A
)

2H? ' O

N,
4

4
/0
A

The numerator, M, is exprossed as 75
'\Q
o 2 # == NN
M= Z( ) ! 2f 21 2 g gy W
??.r) o \\'

R
(N L [t
-w2{i) (nuf {2 o

The integral is P+ 3 =5,
N 2 " mbr)aulzbl ary.org.in
which can be written as

*’”2”“‘[}@ 1.22-3.....1].

14+2n 1.3.5. _2??: ;I
Hence M 4-_H.2) ol | 226, ...

But, by a xQH\'lmown result,

O
W\ 1.3.5. _2”' I_EJﬂcoszﬂﬁdﬁ;

. 5..
Eo.\‘f& _2 4.6 2 Tlo

he};;\g’;, 'if g:@f‘"-"(4H2) =24, (3)
gcoszf) ) 1]

1 (g00820) 2
M=—"_ -+ 2 cos 6‘2
! 4H3~"fﬂf0 {zo: n! -t

1 n g
= | (1+2gcos?f)ercos?df
4wafo( ?

< [ {1 +2b+2b cos 26 g2 008 2 .
4:H3 ,\'Iﬂ"

N\
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Now, Jy{b) can be expressed as an integral as tollows:

J gheos2f 49 — ?Tirn(b)*
13

m

from which f cos 2P roRdl df) = ﬂ“dif (By=nml (DY,
0

where J,(5) and £,(b) are the modified Bessel tunctions of order zero

and one respectively., Heuce O
et im , , . &
u="2010 4 1) s 2000 D
« \/
1 N
Trom (2} and (3), K == ¢*; hence 22
20T (¢
; O
S NT \4
r=2_ (b, {4)
) b
2A \\,
where by =e=?[(1+24) If‘b. 2L (B)). (3)

The values of the functions e- Muﬁ‘c) and e =1 {x) have been tabu-
latedt and hence the valuey of bh@funclwn W{b) con be easily foundf
for various values of b. N\

It is more c&?’ﬁ'ﬁ‘ézﬂ'é‘ﬁ?%é‘iﬂeﬁ’sg“"in {4), in terms of a funcHon
G(q) defined by

O G@="5 ),

in which "; g=2b=y2/4H?

and O y=2h%p, II*—po4 3
x:\”' El

so this) _ K

Ol =

The function G{g) was introduced§ by J. C. Kapteyn and P. J. van
Rhijn and evaluated by an approximation process.

The values of G{g} are given in Appendix 2; these valucs have been
obtained by means of the acourate formula (5).

1 G. N. Watson, Theory of BRessel }”u,m.imns {Cambridgs University Fress,
1922}, pp. 698713,

I See, for examplo, W, M. Bmu.rt, Stellogr D yraming (Cambridgo [Tniversity
DPress, 1938), p. 43,

§ Groningen Publ, no. 30 {1920), P. 63,



8:19] Correction of Function of Vectors 215
If /') is expressed, in general, as
Flp)=24,Bpe "+ 24, k5p e 4L,
the formula for ¥ becomes
- xie e
7 z (6)

= ) s
E 14:5_.{")?_; eﬁ‘ﬂ

whero B3 =i+ u=hplHE

B2
o \

(q}\
AN

N/

it 1s assumed that the ohscrved distribution leads to thei@valimtion
of the A’s and &’s. The constants in (G) are then found by;means of (M.
For a given observed value, p, the value, 7, is theiinproved’ value.
For cxample, taking the distribution in Tableyl9}/we shall find the
‘improved’ value corresponding to a vect-or‘ fot which p=3"-0.
Now, b= 1 _ Q62_7r§0_)2 =1-422, with :??1; 0"4, Also, we found
) \

242

7=10-525; hcn‘ce, H25k2+ﬁ2=1-688§"i'hen g=1191p?% so that, for
p=3"0, g=1072. ‘v\;’:{\-’\\!.d braulibrary.org.in
From Appendix 2, (g)=3;35H hence
R\,
S gy =2"-57.
& 25 @)
Thusg, the ‘imprgv.éé;’ value of an individual observed value 3"-0
is 2".57. e \ b
2

O
8:19. C&r’é'ction of a function of vectors by the method of

woperators

o ;igbéfbre, w(z,y) and v(x, ) are the relative frequencies nfl the t-‘rue

nd ohserved vectors; we assume that the modulus, kb, of {the error

funetion ¢ is the same for each coordinate, By analogy with 8:04{3)
the intogral equation is

o) = j: [ st y-moiaripyiadt

where « and § denote the errors in the two eoordinates.
By Taylor’s theorem
ity y— )= o~ P P B,
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where IY and D, are the operators &iée and @8y reapectively. Then

b2 [ . T anz , _
slr,yy=— ¢ R0y o R A e,
LU g—y —o

from which, I} and 2, being regarded as constants,

vl y) = e PRI gy )

A4 LlbE i B, cX -]..l [ .l H'
L L J \1 ( fis )']

& \ \
Since the standard error, g, ie given by g2 = £ 252, we [k:f\F % D2y,
2oty et PA
ulx, ) =vlx, ) — e l e |K & \
2 |Fet g :,r >
If e is the class interval in each coordinats lhml
2 a\J
= € N .
wla, y)=v(x, y)_.‘;cﬁ {%:&}4._\3(’,’”}. ()

.
N\

where A,(«) denotes the second difference in the values of » with an
assigned value of %, and Ay (y) i3 d@imed in a similar manner,
In terms of polar ooordmai,e‘w and 4,
WA CEIaLau Iiii%;'al VAE g 1—1! 1z,

cz\z\Jrcq-“: ér e‘:,-'-2+r g

[f the funetion ,\b‘[ iz tabulated at intervale ¢ in r and at intervals
binr0, then, in terms of first and second order differences and to O™,
)\ 4

2o w1 Aol | 85000 )
:'\“.L(r,ﬁ) R @)

I\s’ “elear that the uge of the formulac (1) or (2) requires 1he

\tahxtlcs_- of & very larze number of vectors; otherwise, the neeessary

i»\#inou’rhmc of the dlE-s‘[’,I‘lbuthI’l v, y) for (i) y constant and {ii) = con-

"\ “stant or alternatively, the smoothing of the distribution «(r, &) for

7 (1) # constant and (i) # constant » cahuot be achieved with any measure
of reliahility.
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CHAPTER 9
CORRELATION

9-01. Introduction _

Consider two distinet attributes, age and height, of a large number
of idividualy; ag a matter of simple observation men of 50 vears of
age arc on the average taller than boys of 10 years of age, and the
latter are taller on the average than boys of 4 years of age. Thgrt\i ¥
evidently a somewhat general atatistical relationship between\age,
A, and height, #. This is not a precise relationship, for, if ig Were 50,
there would be a definite connexion between age and heighb which
eould be expressed by an equation of the form: H=f (11'),\

Again, for example, of a clags of thirty schoolboys sfiidying Fatin
and Greek it might reasonably be expected by glassical masters—in
the light of previous expericnece—that, in genetal; proficiency in one
silyject would be related in a fairly close, way 1o proficiency in the
other, and that a poor performance in que’]mhguage would he accom-
panicd by a poor performanee n t}’t? other; in other words, there
would be a general relationship b\gﬂs\s%he erformances in the two
languages, but it would not necessarily saulibrany.eigeliex pressible
in termme of examination mapkeNin the form L=f{G).

We take another example from physics. The relation between the
pressure, p, of a gaz, it-'s\%dlume, o, and its absolute tem perature, T,
is given by pr=£T, svhore Ris a constant or, in the more convenlent
form for statistiealpurposes,

"\.‘;\“ xt+y=2+0C,
where x %‘MP: y=log»and z =logT.

1f T~i}g eonatant, we have Boyle's law {1662) and, if p is conztant,
we Jaye Charles’s law (1787)- ) _

TF We suppose, by way of illustration, that Boyle's observations
¥ heon made without any reference to temperature—which, we
might suppose, had any value between 273° {absolute) and 3007 in

his series of measures—the relation pv= constant, or

THY=0 (1)
nnecting p and v or x and ¥,
ald be found to be scattered
in Fig. 21. Such a diagram

would not then be an exact formula co
although the aggregate of points (7, y) wo
fairly closely about somo guch line as P@
is called a seatier diggram.

Q)
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Although  and y are not related by the precise forn 1), it would
be cvident that there is seme connexion, or statistical reliationghip,
between & and y suggesting that, possibly, some other factor was
operating to produce the dispersion of the points in the dingram and
that further experiments with stricter controls might roveal i,

In such cases as we have considered we express this grneral re-
lationship by saying that there existe a correlation beiween the two
attributes or characieristics concerned.

On the other hand, there js no
conceivable relationship between the
weekly number of babics Lorn in the
Soviet Cnion during the four months
of May to August 1956 and the
weekly aggregate of rung scored by
the Ausiralian cricketers in firat-class
matches in England during the same
four months. We say in thiz ease thai, ——
there is no correlation between the two Q O - £
sets of statistics. O Fig. 31

Our hypothetical example on Boyle’s law, which, of course, has
no close relevance to the historical :éeque-nce. of the discoveries men-
tioued, illustrates the importdnee of following up, with Carther
Investigations,, s, seuisaafiloBseysations involving two entitics and
revealing a high degree qf'coﬁ‘ela.tion. In this connexion an ilhistra-
tion from astronomy sgreshes this particular point. About 1914 it was
established that there'hs a close correlation between the lnminosity,
£, of the stars of tho “thain sequence’ with spectral type which we now
associate with, .étféctive temperature, T'. Tt was noticed that the
hottest, stars, hlfxd’ the largest masses, M and, progressively, the cooler
stars had Aghe’smaller masses. In a sense this was a challenge to
theoreti¢al “Investigators of the internal constitution of the stars
culmiftating in Eddington’s discovery in 1924 of the mass-himinosity
rolaglphship, substantially of the form /,— fLM, Ty, which revolu-

L tonzed the astronormieal thonght of the time.
\ ) The application of correlation methods has thus, initially, at least,
two possible aims: first, to discover the degree of dependance of one
variable on another and secondly, in many instances, to snggest the

desirability for further observational and theoretical investigations
along new directions.

Y

9-02. Covariance

Suppose that of N individuals the number (or frequency) f; have
the pair of measurable attributes, such as age and height, which we
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denote by w, and y,; such a distribution is called a bivariate distribution.
"Then, a= usnal, if # and 7 denote the means of the two attributes,

Nz=3fx;, Ny=2fiss- (1)

The variances, o2 and o2, corresponding to the distributions of «
and y respectively, are, by 1-08 (5), given by

Noi=3f(e;— 7, Noj=If{p:—§" (2)

Alka, by 1-06(14), if py(n) denotes the second-order moment, with

reforenice ko the values of z; about the line z=g, thon

2EN
fal@) = 2 B =02, L)
Iu particular, Jis(0)= o2+ F (,,’}‘.w {4)

We have formulae, similar to (3) and (4) for the second-eii{er n’lo_ment
of the values of y; about the line y=5; thus, if v is deﬁﬁ}d for i in the
same way as 4 is defined for z, \

.\\w

viBy =it 71,
and, in particular, v{0) -——0'54-37":-‘; v
We now introduce the product -ngé:ﬁmat about (a,b), denoted by

£ (e, B : d by o
sein(z, by and defined by wiw . dbraulibrary.org.in

Ny, )= Bf s — ) (=) (5)
or, on expanding the I'igl;}b-}}and side and using (1},
Nl o) = sy -+ Niab— o —b7)- (6)

Here, -i; p A yg‘a’;ﬁpﬁ’(o, 0} is the product moment about the origin.

The prod{fg} “aoment with respect to (% ), that is, p (T %), 18
given t'h?,\:specia.] name of covariance, usually denoted by p; thus,
from (@), With ¢=7F and b=7,

O Np=Sfz.y:— N7 (7)
\{énce, from {6} and {7},
Nl p—pyla,d)]=N{ag+ bE— TG —ah)
or p=pnle,b)—E— a) (§—b). (8)
In particular, p=j1,(0,0) %Y. )
ro convenient to derive the

schere @ and b are suitably
by means of (8).

In caleulations it is usually much mo
value of the product moment JORICIROR
chosen and then to obtain the covariance, g,
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As we shall sce later the covariance is one of the faclors which
determine the degree of correlation between the two chirmeteristios
under investigation.

9-03. Lines of regression

The information relating to pairs of characteristios (. a0 can be
conveniently displayed in a scatter diagram, as illustrated in 17g. 32,
in which the related pair of characteristios {2, ) 1s reprosented Ly
a dot at P, with reference to axes OX, O0F. Tn many stanedsle Is

N

2 AN

G N
www.dbraulibrafyzoBs.in

found that the assemb}g of dots suggests that the puints arc dis-
tributed, more or lgsg €lgscly, ahout a straight line. The problem is fo
determine the equaﬁ(\m of the line which best represents the statistics,

Let O

A\

be the cqqaf{io’n of a line LM, in which m and ¢ are two dizposable
constantré'\:io be evaluated according to some eriterion. Let the
ordipsa%’through Filwvy, ;) meet LY at Q2. Y, then Y, =mz, +¢
and WP O =ma;+c—y,. We further suppose, In general, that the
freduency of pairs {x,, y,) is f,.
Y “One eriterion for determining the line LM which best represents
the statistics is that

B=3f,. PQ=Sfma 4 oy, @)
should be a minimum; the conditions are
8K '
ot din
The first condition, ¥ being the total frequency, pives

Zfi{ma;+o—y,) = Nmz + cN - Nyg=0

y=mx+c (1
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or #=mi+c. (3}
From (1) and (3), g — G =mx—T), {4}
which shows that the required line passes through the centroid
(F,4; of the distribution,
The second condition for a minimum, namely, £Ejém =0, gives
B mas+e—y) =0
oY Xy, =mIfai4-chfi,
or 130, 0) = mpp(0) + € A o
= O) + 77—, by (3). o
Now, hy 9-02(4), pof0) =024 7%, N
and by 902 (9), a0, 0)=p+F; A\
henee p=mol. v {3)
The equation of the line, given by (4), beco\m\és
Y- =2 ook

2

PR N\
a3

The correlation coefficient, v, 18 &@ﬁw&m‘?mibmr‘y.org_in
=2 (6)
..‘\\ OOy

~

ke _
The equation of the lhq\ésis' then writton as

oY =i, (7)
'\1 ) T, Ty
This li{cﬁ;ﬂ: ealted the line of regression of y on 2. .
It is&obe observed thab LM, the linc of regresston of y on is
deriyed % ccording to the eriterion that Xf; F;¢? should be a minimunl,
&y % lternative criterion to give the line best in a-c(:.-ord ange with the
\QtaEist-ics—represc.nt-ed by U¥ in Fig. 32——.13 tha‘_c- TZ fz 1, P#should he
a minimum, E; being the point of intersection of £V and the parailel
to OX through B, N
If the equation of UV is written s
x=My+C,

where X,=My,+C and the

the coordinates of R, are (Xi, ¥
condition becomes that
E=3f(My,+ 0~z
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should be a minimum. By analogy with the previous worl it is readily
geen that 71 is —F  u—i
RETLEES ()
0--13 O‘.’a’
where r is defined as in (8).
This Huc is called the line of regression of x on y.

Referred to the centroid as ori gin, the line of regres<ion of yon zis

T,
W=—"r, po
= A
. . . AN o
and the line of regression of + on y is AN
N\
re, \/

=
o

A

i N 4
The two lines of regression are identical only /821, By (6), the
sign of 7 is that of p which may be positive ox negative,
PN
9:04. The correlation coefficient R
Leti 8% denote the mean of the squared deviations P in Fig. 32,
80 that e W
NEE=3f lmz, +c~—g;}§
W Bl Bl G W) by 9:03(3),
=Zf e 8 — (g~ 7)1

}._. o2 2 2 Doy,
Hence ) {»QS s=mEot 4 o — 2mp,
¢ N’
Now, by (5) and_((%.0f the previous section,
5N migh=p?ol=rig?
N
£ ) ¥ [ - P g Y
and ) 2mp =22 {0h= 2ol

{
W

hcnc«?\\ii\; S2=a2(1—r2).
Thik equation shows that | 7| < 1. Further, if | | =1, then
~

Si=1 X =0,

from which it follows that all the points P, lie on a straight line; in
this case the characteristios x and ¥ are functionally related and the
correlation is then perfeet, When |71 <1, the degree of correlation is
expressed in terms of this value of |#|. If =0, the lines of rogression
are lincs through the centroid parallel to the axes OX and 0Y; in
this case there js no correlation. The correlation may be regarded as
significant it || is not less than -5 and as highly significant if | 7|
in 0:8.
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9-03, Fxample on the calculation of the correlation coefficient

About a quarter of a century ago when a sufficient number of
observatious of cclipsing binary stars heeame available, Lundmarky
drew attention to the high degree of corrclation between the masses
and the radii of the components of these systems,

T Table 20 are given the masses and radii of the more massive
com7anents of thirty-three well-observed systemsf; the mass, M,
and radivs, B, are expressed in terms of the Sun’s mass and radius
a3 unils. .

To simplify the caleulations we write N .

w=M—8, y=R—4 ~ N,
the statistics are thon reprosented by the o and y columns,ﬁ‘}l&"the
remaining three columns are formed. The means of thelseparate
eohumns arc shown at the feet of the columns; they are { &

1 1 v/
0T G 018, —Yat=8T2, MR 10-6
=072, ¥ (r18, NL:L ‘i\\;j
and %ny=3'7‘8. o
We then have Ui:ST-Q—E%;,‘%ﬁ-’?,
AT librarv.oro. i
g2=19-6 PR Ulibrary orgin
and, by 9-02(9), p=3z-8%53}=‘57-9.
From these, o2 g BN 699-3 = (41-2)°
) -
e L p 378
wd N e, TR
that iz, P <& r=0+92,

The large v@;zfé of # shows the high degree of correlation existing
between 3tand R.
The }er\)f regressi
AN y+018=0-437(—0-72).
S{ﬂ\’l\‘iﬂ;ﬂ}?, from 9:03 (8), the line of regression of @ on ¥ is
y+0-18-——0-517(x—0-72).
-6 and 27°-3 rospectively; the lines pass
and are mutually inclined at the

on of y on x is readily found to be, from $-03 (7},

The angles of slope are 23°
through the centroid (0-72, —0-18)
small angle of 3°7.

t Lund Observatory Cireulor, no. 5 {1932}, p. 109.

{ C. Payno-Gaposchkin and & Gaposchikin, Variable St:ia 4(311!“““&
Observatory Monogf&}’hﬁ’ 0. i (C&l’ﬂbl']’.dgﬁ (3’1&53-}, 1938}, pp- N .
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Table 20, Masses rend radit of the more e v
componends of bivetry stais
& i
[ =) {h—ll i
wooon + - + - o -
o8 12 — 2 — 2 2740 7o 46  —
- 35 -2 - . -0 (i) - A 0-
@7 30 0-7 - I I I L o7
LY F8 -0 1401 oA a2 —
a7 ] 5 - 21 Loy L NSy By —
24 33 LN — (O 150 u.r-:;‘\; R —
o6 (6 - it — o 242 J4-U 151 -
L — +z — Do 17 e 25 -
-4 22 — 42 I8 175,80 T —
363 z2xu o803 — 3w — HlgARN AT AT -
33 170 343 — 130 — (5 3 T T 144-4 -
Id6 e 86— 14 04 240 e =
T B0 10 — L0 N 10 1 - 1-0
L R T N \‘ 134:6 -2 6 —
1o I SR 60" 250 62 125 =
30 25 — 30 — _L> Yoy 2.5 43 -
06 10 S T 29.2 80 182 —
6 30 - 1 ANy 164 1-0 4 -
22 18 wirw_db?"éillLbi*%}i:y_or‘éigr1 144 43 %4 -
21 17 — T R ¥ 152 53 5y -
5 40 IR T N | - — 22 02 T =
50 63 — Ao 23 — 10 53 — Z3
4 18 —,{(Ns — 22 21-2 48 101 -
20 13 -.\\ O R 27 16-0 73 1108 -
4 28 —" 06 - ) 04 14 oy =
4 13 — &6 — 27 21-2 73 P24 -
52 3P - s — o3 -6 01 IS
22 B 12— 209 — 2314 T
87 bl 07 .= 20 05 10 — 14
GENNA-8 - a1 33 270 10-3 15-6 -
3;«'{\ 1-3 — 30 — 27 $0 73 81 -
e 3-1 — 0-7 - -7 3 03 (i -
Y3 45 - 07 0 — 05 02 - 0-3
) 1041 804 399 460 28777 6477 12541 58
Means  +0-72 —018 +872 +196 378

9:06. Contingency tables

If the number of individuals in & bivariate distribution is large,
the method of deriving the correlation coefcient illustrated in
Table 20 involves an immense amount of caleulation which can be
greatly lightened, without any substantial loss of accuracy, by mean®
of a confingency fable, This can be formed most conveniently from &
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seatier diagram. Suppose that the statistics can be reduced in terms
of » and », which may be positive or negative; by drawing the lines
w— e, =Ba, +dan, ... and y= b, + 3b, +5b, ..., we can then eount
the number of dots lying within rectangles each of area dub; if one
. vurnber i £, we then assume that the distribution within the
sugle is equivalent to f dots at the centre of the rectangle; the
Vil sums Xfr, Bfy, Dfe?, Yfy? and Efry can then be readily
eistained. The method is illustrated in the following example.

9-¢7, Hxample on the use of a contingency table O\

We consider the distribution of parallaxes, II, and proper moties, -
s, of slars in two antipodal regions of the sky. In general it wonld be
expected that there would be some correlation between ILaRd  for,
otiier things being equal, the nearer the stars—that is, E]qaizi-rger the
velues of TT—the larger would be the values of p. Q)

The statistiest in the following tables refer to valiles of 11 from
4625 upwards and for values of g from 0”181 wards, the stars
concerned lyivg in one reglon, defined by rig}fxs Wscensions 43" and
71t and declinations positive, and in the autipodal region.

The stars, 146 in number, for whit‘aih 07025 < LT £ 07106 and
("-10 £ g < 1710 are treated by meang Bbthe contingency tabie 21.

There are fifteen stars with. 1&rger}¥"alues of _II and g, and these wero
doalt with individually as in Table'2006hs ks vexedtill be given
later. \’

We take I1=0"05 and fe=0"45 as convenient values of @ and b
%)ﬂ —5, y=l0u—43.

Tn Table 21 the c{:iss interval for TI is 0”1, with l:-.he middle values,
IT,,, equal to 04,974, ..., that is, with unit class interval for » and
middle valugs.22, —1,0, -...

Similarlyythe class interval
equal tg\O¢15, 0725, ..., that is, with unit ¢
middlﬁfv}ﬂues —3, -2, -1,....

Ti the first of the two rows in Table 21 corresponding to ea.wh va-lu_e
of ,} {he number of stars in each rectangle of the scatier diagram 13
inscrted; for example, corresponding to x=—2 and y = —3, the num-
her of stars with II between 07-025 and 07-035 (that is, with I1,,= 0 -.03
and with = —2) and with z between 010 and 07-20 (that is, with
Jom=0"15 and y=— 3) s 22,

In the second-last column are found the numbers, f, of stars ecITe-
sponding to each value of y and for all values of a; thus, there are
thirty-four stars for which y= —3 for all values of .

Stellar Paraflazes (Yalo University

and write e

for p is 0"1, with middle values, fy.
lass interval for y and

+ I, Schlesinger, General Culalogue of

Ohservatory, 1935).
5C0

15
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Tahle 21, Contingency table for 146 stars

FaboLb | 0703 0704 0703 0706 0707 0708 e
5 & ! Eox)
' \y‘\ —2 1w 2 3 1 5 f Sy
015 -z 22 64 i 0 0 " oEoad
: 132 1% ¢ -3 0 0 0 Wl 147
gees -2 11 4§ 4 1 0 1 [ 36 —
44 0 -8  —18 0 5 -l b 20

]

0"85 | —1 7 74 2 2 i 1 poledgN —
! 14 0 -2 - 4 -3 -4 (0 A 8
0745 0 4, 52 2 1 2 i wNNLT —
0 ¢ 0 0 v 0 0 NN | — 0
%55 1 3 3 1 3 1 1 R s ! —
-8 -3 0 ] 2 2 + N 0 3
085 | 2 2 0o 2 2 0 0 K1) i T —
- 8 0 0 4 0 IRPAN R p— 4
075 3 3 10 0 2 NN 4 5 -
| —-1%8 -3 ¢ 0 12 0 i} ¢ — =9
0m8s | 4 0 1o 1 (G 7N 0 ; 3 —
0O -4 0 4 B, 70 0 w | — 28
ones L5 1 o 1 0 PN 0 f 2 —
; — 10 [ 0 N\ 0 ) a | - =10
05 16 0 00 [P\ ] 0 0 vpo2 =
i U yrw w Abrdulibraly.orglih 0 i o — 18
Sums 53 32 22 w37 12 4 4 z 146 209

Similarly, correspnm@ng to each value of  the number, f;, of stars
for all values of y is jisérted at the foot of the corresponding column;
thus, there are ﬁit}\-\tﬁree stars for x= — 2 for all values of y.

In the sccond tow corresponding to cach valuc of y in Table 21 are
found the valate of fay for each value of @; for example, for 2= —2,
y=—3 and\p=22, the product is 132. The first entry in the final
columnggamely, 147, is the sum, denoted simply by fry, of all such
prodests“fomlcd for all the values of = and for y= —3. The other
entxies In the last column are obizined in & similar way. Frow the

ssum at the foot of the last cohimn we have, for the 144 stars of the
o~

\\ ) thble, Sfry =209, {1}

In Table 22, f, is the number of stars, for all values of ¥, cotre-
sponding o each value of z; these are the numbers found at the
botlom of the eolumns in Table 21, The products f,x and fyx® are
formed and summed.

Simitarly, in Table 23, f is the number of stars, for all values of 2,
corresponding to each value of y; these are the numbers found in the
second-last column of Table 21, The products fy and fy* are formed
and summed,
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Table 22
Fuz
(_—-—'-\__
¥ 1 + — fi2?
-3 53 — 106 212
—! 32 — 32 42
0 23 0 — 0
1 17 17 — 17
2 12 2% — 48 . &N\
3 4 12 — 36 \
E 4 16 e 64 A o
5 2 10 — 50 \t\{%
146 59 5y W
o)
Table 23 R4S
PR
——
¥ ! + -
-3 34 — 1oz 306
-2 26 — Oy 144
—1 24 — e\ H 24
0 17 00N g
\\ug _— 13
; ]3 Q ;WW,dbra_L_Jhbrary.ogﬁm
3 6 N\ 18 — 54
4 5,80 20 - 80
3 S 1 — 50
@ N 12 — 72
(46 ~111 771
O
The resu?{&"_’[‘ables 29 and 23 are summarized as follows:
N/
"z<\ Spx =59, Zfy =—11L
'\:?: - 4 ol
gr\ Sfat= 459, Bfy= 7L
ard, from (1}, ey =209,

The results for the fifteen stars outside the ranges of the econ-
tingeney table are mercly statod here; they arc, with f=f; =1,

e = 141, Efy = 101,
%, #t=1650, Efy=112L,
S fay=1031.

I5-2
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Combining the above resulis with those for the 146 staws of the
contingency table we have:

Efl:t; — 82} Efy = - 1(].
Sfa2=2000, Sfyt=1892,
2wy =1240.

The total namber, N, of stars is 161, Then,

N
1618=82, 16ly=—10, A
AN
16142=2000, 16142=1892, AN
1614,,(0, 0) = 1240, N\
where N =3f 2% Npui=X j;yz'\‘
and N (0,0) =2 fioy, \) Y
We obtain: AN

x=0-51, §=-006, ;@%}2-48, pi=11-75
and (0, 0)="7-70. With these wilues we find

KesianEaipesy ofm— =117

and = 10,,(0,0)— TG =T-73.
:“’Q\ I}
Finally, (W = =0-6486.
nally ’ AN ¥ —_— 0-646

For the st-g,(é’}'ééncerned there is thus a high degree of correlsation
betweer:l,t\hgir parallaxes and proper motions,

N\&
9- \‘f’arameters for continuous bivariate distributions

~OWe suppose that there is a very large number, N, of individuals
w\:,,,ea-ch with an associated pair of characteristics, denoted in geuera-l
\/ by @ and y and represented as in the scatter diagram. Let ¢(x,%)
denote a function such that the probability that a point in the «, ¥

planc has coordinates between & and = + da and between y and -+ 2¥
" Pl y) dzdy.

As in the case of the normal function it is stipulated that ¢—U as
& ->+ o0 and as y— + oo,
If dn denotes the probable number of points in the area drdy, then

dn =Nz, y) dedy.
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“I'e vacan, ¥, of all the values of x is given by

1 o feo)
E:.—TExdn=f J xh(ax, y) dedy.
N —co ) —
o &
Similardy, g:f f vz, y) dedy,
—en J -
Let o2 and o2 denote the variances of the values of 2 and of y; then
oi= lY S(w—z)dn
N o Y
¢\
] @ N\ ¢
=f f (2—F)? i ) dody
% o _ \\
and r,ri:f j (y— )2 bl y) deedy. NN
-l ) — v
The covariance, p, is given by _ , x:}\”

p=[" |7 e-nu-plihia

The correlation coefficient, 7, is defined, as in 9-03 (6), by
N '.’}e’ww_d braulibrary.org.in
L

~\
¢ e\J

9-09. Normal biva;‘iét\e distributions

I deriving t-he‘nérrha-l law for one variable the postulate t-hs‘ut- t,l,lz

arithmetic meaf sy the most probable v.alue (‘:lf t.he rpeasires “0(1;:

invoked (§3:@'3}_“’]n the case of & hivariate dlS}Clrlbllf.;l‘Ol’l t’o ez m 3-}.

probable p\«i;qiﬁon of the points represented by ifhe coordncllate;s bx(: ,ty]';e

in a scatter diagram, where i=1, 23 ey tn,l 1ts assume

centrgid (7, 7); this is known as Cotes’s postulate. |

Efgé% and ?i are the deviations, from ¥ and ¥ respectively, of @ and

Jhshen R v
2
and ¥E,=0, Ty, =0. (2)

ot is associated with

Lahilit : of
Tet ¢(Z;, ;) denote the probability that & p ¥ that the complete

deviations £; and ¢;. If P denotes the probabilit,
distribution ocours, then

P I 66 1) = T1 Bl =T 95— D)
i=1

Q)
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The probability is a maximum when
I ¥

op 5P
(,—_=0 and C,%:O.
&x €y

On taking logarithms the firet condition is cquivalent to

a
s M, —F, 1, — =10,
E_Elogrﬂ(xz T4 — i) =0,

QS
or, by (1), log(ﬁ (s 9,0 =0, (3)
o og? , 2\:.\.'
Similarly, the sceond eondition is equivalent to . ‘:E\ )
¥ &
zgﬂ«logmgg,m):o' N
o
Let (£, %) denote 6%? g ME, ). 'll@ 3) 15
V(El 7?1 +V(§’ ?32 +z \4“1:} gn ?}n)_ H’)
Now, the n £'s are not mdcpelident for, by (2), £, for example,
s given by N
gy = ~£5ﬁ£2+ L), (3)

Hence, by dlffm‘éwﬁ*ra%lﬁ}rﬁ%@]{’{?‘tﬁﬂf Bebbect to £, wo have
\ﬁr’( 15 ??1)+GU 9,

YR,
\\\, &k, ek, oé,'l
- e &y EJr‘f
by (5, WA\ &,y .
or, by ())‘t\‘, "§1 (‘-1 l C'EH {gn 7}:&

bum]ar (“‘qu&tmnb are obtained on differentiating with respeet to &,
whate 7=2,3, ....n—1.
{I@nce if we w mte £, 7 simply for any pair £, , %, we must have

2
™
e

3
3

g”\ 3?,-5‘ .
@ o4 —r =cohstant = — 2.
\ } o€
4 oo
. s
In the same way _’f — 24,
] ’

where % is a constant. Hence

Qu

¥

dy=-2 gz
V=%

dE +- --‘*;d;;--zada 2, dy,

3
whence trz= BE log $E, 9)= — (2uf + ) + (7, {6)
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whete ¢ i+ a canstant. Then, from {4),

N, 1) = — 2028 — 2h X+ #' =10,

from w vh, by (2), O=0.
By o +imilar procedure we obtain
;7} log (€, 1) = — (s £+ 2D7). (7)
Difrentiate (6) and (7) with respect to g and £ respectively; then
hl =F. N\
Ny Ioggb ]0 (;5 e
dlogd= T d (\A
g¢= + =% -
henes: log p= _(a,gz+ 2hin+ by?) +logk ‘,u."‘.
or e, ) =ke % t-2ngy by, m< o
It is convenient in the sequel to denote the devidtiens by » and g,
the fanetion ¢ is then given by \\v
¢{x J) = a—(a:rﬂ-r2h1:¥—ﬂval\ (8)
the origin being at the centroid. \

The distribution, given by (8 ), 18 a~3wg’mal bivariate distribution.

wWw dbraulibrary.org.in

9-10. The constants of the normal bivariate distribution in

terms of 6, G, and\"}s .
/] Y 9.0% (8} to a confinuons
We now apply the v nyll Function given by !
bivariate distribution "he pmbabl_ht} that denatmnssbet“ (;3;; x
and x+dx and be’m{veen y and y+dy should oceur is gz, ¥) drdy.
The total pr Obablhtv for all such deviations is unity; hence
N

$

\i:\" J‘m J‘OO ¢{x,y):[,

thafg}q:' k=1, w
Qre I is given by
=] r g-tantazhov v ddy. ®
— w
Now, az?+2hxy + by* = —(ax-{- Ry~ (ab B y*
A:ab'—ﬁ' » {3)

Hence, if

N a ? L 2| :r:l 3.
I——'J. expl:.—;.yg:l [J\_wexp{-—a(a.v-ﬁ-ky) jvd 1y
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The integral within the squared brackets can be written ws

= h
J e “*dz, where z=xz4_ e
—

and its value for any assigned value of ¥ Is \/(wi@). Thus,

[ A Fid
-/ (a)._f-“-*{‘ayﬂ“’”:ﬁ*

and, from (1), S
7
: \-"Il‘ﬁ‘ 3 o :\.
Accordingly, A, y)—_. e—laa 1 2hay < 6% A\
,\\“»
Now, o= J J iz, y) dzdy \\\ v
\
=2 [ f a2 g—ina? miﬁ-b; D el dy
77 af —o gy —an \V'
JAET 0
= e—— Qs‘
7 Ea’ “\x
But, from (4) and’ (é‘)v -dbr au{‘;&i‘i o ,m
hence ¢ 'K} P
O TTOAT
AN
. t"".\" @
Similarly, NG gzz;:z__\

\ ! Bal o
Acoaim £ % ’V'A —{ex® 4 2hay by g
F: gmn\,\\g”; = xye n=E ey
) —w

N 1 JA BT
W BEERS
But, from (4) and (3),
af wh
Gh A%( 2h) == TAF
Hoenee = .
P75
From (6), (7)and (8) = g2g%ptz.

4A’
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and, since r=p/(c,0,), oroyl—r%) =1 (9)

Faom (7) and (8}, we have at once

1
= STt (10)
Sinsilariy, 22_0'2-(.11— ot (11}
3
r
and h= _2?@9;1@;2_}' ‘(\2’\2{)\\
Thus, ¢ and & are positive and b is positive or nogative. AN
Also, 1 “f ™y
A=fomeq—my o w
st that = %UEZ}T“TQ) . :\\; (14)
Also, for later use, by means of (6}, ('7} %'%E} \A3),
ab 1.8 (15)

= _’V'TL »
A “]wtﬁi’v%_dbraulibr‘al'y_or‘g_in

In terms of o, o, and r the. noPmal bivariate function is given by

O L 2 ]
P, ;?f)=%xo.—wr®_;a‘) exp[—ﬁ_rg) ol ooy O3

PAY, A T
NOW’ E‘éa&ca‘{“ 2;1553!"{— byzzg xs‘i‘ b(?H— ?)
5“\;:~ . A ?’&UO'E 2 (16)
or \\\ =% x2+b(y—- o ) .
chef{::{;

F
O ANE A AN _%)]d_

7h
ility (i _point lies in the strip
This expresses the probability (i) that a poin '
betwelzzne iie lines perpendicular to the z-axis w}:th apsgligae‘fi taﬁ;?l
i iYitv (ii) that the pomnt Les ®

x+dzx, together with the probability (i) i ths
this S’Gl'ipgwjt-h ordinates between y and y+dy. The first probability
can be written, by means of {6), as

1__ e—=timd g,

o (27)
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the funclion in which is a normal or Gaussian function with gtancard

deviation o,. The sccond probability is normal with respect Lo Lthe
puint (x,#,,), where
e,
Y=
O‘i‘
the standard deviation in this case is 1(20) or o (1 —r*y2. Thus, for
a normal bivariate distribution the points (z,7,,) lic on the le of
regreesion of y on .
By considering a strip between parallels to the z-nxis with ordinaies

¥ and ¥+ dy, we can write A
W
At A W4 v
P, y)dudy = (—) exp [ = —yﬂ dy (E) e ““’Zf“*l} d,
77'({"_ L _?7, & ‘n"
T, ¢ :
where Epy=—"1; AN
T U,y y & .}

the point (x,,, y) Hes on the line of regresging’of « on y.
‘“:\ &
9:11. The probability ellipse ()"

N/

The probability that deviatiél:{’s frora the centroid lie between &

and x4 dx and between 4 and® 7 1
+ www . d gﬁ'ﬂ&fﬁg{‘g}%{oﬁg_ in

$

4;6(\5 o) dudy— ? e~F dady, (4
AN\
where \< Y E=nz?4 2hay+ by,

Now r2< L.soMhat o, b and A are positive. Hence, by 9-10(16),
I is positinc¢t/

The Pr.“iba'bjlit'}’ expressed by (1) is constant for all points on the
cur% T=2A, where A is a constant which is necessarily positive.

Si'rkeg A'is positive the curve is the cliipse
N A fA+ Ry A+ by A =1,

\“\ N/

Referred to its principal axes the ellipse is
2o 4yt fE=1,

and we have the invariants for ch ange of axcs, namely,

11

ot p R )

1 1 A
and ﬁ2=;@ {nb—h%) = T
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The sven of the ellipse is maf or 7AjA%, by the last equation. The
area, .1, between the ellipses with parameters A and A4-dA is
ad AL and the probability of a point falling within this area is

A wdA
S, y) A4 —e - g dA
o, ) or — et-g o ¢

Hener the probability of a point falling within the ellipse with

paraineter A i 2
[ etdA or l—eh
Jo

The probability ellipse is defined in much the same way as PI.‘Obaubl\B:\’

error for one variable; it is the ellipse guch that the proba-bﬂlt-y:‘qf a

L NG
i 7
/.’Ri 3.,:\"
—i- Qi{x")'y"q)s
Nt 1%
é; P}j(x") J’x}')
i
v dHraulibrary org.in
3 !
=% X

A\
) Fig. 33

o the probability that the point falls

puint falling withimit is eqnal t bility th
- h for this ellipse Is given by

outsicle it, ﬁ[ig{da\the pa-rame-t-er

\:..\l, 1'—‘8'_)‘—'_—91,
from which eA—32. Tt is readily found that
A A=0-693.
'“\' W
3 ote distributions

9712. Curved lines of regression for discr utlons
nts in the vertical strip in Fig. 33

Lct f, be the frequency of the poi e
boundiil by the ordinates x=‘-ﬂr_"]z‘c and @ fé?*f'%c’uxvhizz Ehl;t- ;15
class interval and the origit, 0, is the centrovd: M; 8 tI:L}Eive ot n
points in the strip have abscissa ;. Ty 18 ® represel I
the strip with coordinates (%i» Yai) o e 4
Jet ?,E-)m denote the mean ordinate of points the strip so tha

1
fiim=2 Y {1
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If ¢, is the point corresponding to Yim» the locus of @, is the regres-
ston curve of y on z, represented in Fig, 33 by the curve 7V,

1
The correlation will be close for the strip iff P67 is small and

13

for the whole distribution if oDl @3 is small, where & is the
£ 2 5
total frequency. Denote this double summation by 8%; then
NE= Z E (3/;1 T ?)’im}2 "
i N
:Z Zy?‘}_z:yzmzyu‘}‘z[23’?«1.)' .’\\\’
P i i i AN
)
The first double smmmation is o2. Also, >y, =t 'z-y?__,m.hlgo'ime: by {1},
i A )

we= N

i 4%
2 y2 2 o~
‘6 _O--y_'_j,\jz_fiya'm' & g\

For cloge correlation S is small. AL
Define ¢ {a positive quantity) by ¢* ;'\

e
B — M,Q »
7 w2
3 w

{2)

then www,dbrgpg%ﬁfgﬁ_ (3)
PRV

Here 5 is called the corgdlttion ratio for A O,

Tt follows from (2) kl‘n}t 71s close to 1 for a high degree of eorrelation.

For & given bivdrfate distribution, #im can be found for any vertical
array in a contihgency table with a suitable class interval; also, o,
can be obtaingdlin the nsual way. Thus, the eorrelation ratio can be
caleulated liheans of (3). If  proves to be elose to 1, the degree of
correlatigys high.

Th epprelation ratio for % on % can be found in a simitar way.

We now prove two resulis: (i} if the enrve of regression of i on w13
adtraight line, then y=r, and (ii} for & curved linc of regression, 4 > 7.
. (i} 1n this case the locus of €J; 1s the line

¥= ﬂf.’t?,
where M =rojo,; hence, for @i+ Yim =Mz, and (3) becomes
NoSp@P=1Y fual= NM2o2=Nody?,
i
Thus, p=r.

iy Whatever the distributon, the quantities Gy, Ty, 7 and M can
be calculated; hence the line ¥ =Mz can be drawn; it is QL in Fig. 33.
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if the ordinate through @, meets OL at R;, then @, E, measures
the departure of the curved regression linc from OL for the strip.

MNow
Q«;R%"_— (8 i — M)
sl S i QB =X yh, — 2M B+ MEXfa?
=Nolp—2MNp+ M N2, {4}

where p is the covariance which is equal to ro,o,. Hence, with
M =ra,jo,, the right-hand side of (4) reduces to Noy*—r?). Since
the left-hand side of {4) is positive, then >+

In this case, when the linc of regression is not a straight line, the
correlation ratio, #, is to be preferred as a suitable measure of cqry\élﬁ“-.
tion over the correlation coefficient, 7. g W

A
< 3

4-13. Correlation ratio for a continuous bivariatg Q'ié.tribution

In Fig. 33 let the ordinates shown define a strip afgwidth da. If the
probability function is ¢(2,y) with the property N

[* 7 sepaneh
ey - O\
and if ¥, a large number, is the total ﬁml‘méncy, the frequency for the
element dudy is Né(x,y) dedy. v dbradibrary org.in
Let N, dx denote the frequencs for the whole strip; then
T

dex%l\'dmj Pz, y) dy. {1

The mean, #,,, of the\}rd.ina.tes in the strip is given by

e 1\ 'fVdexym = ﬁdeJ :%;5{:& y) dy

Now, ¥, Ps\hi}ailcti()n of z and we can writc this last equation as
N\

N\ Nxd:w%i\fdwj Y P V) Y,
AN . .

a\Y )
BK, by means of (1) and on integration with respect to .,

qu J ) ﬁasﬁ(x,y)dwdy:fw J " yyedepdedy. )

—a
i ip with referenc Al Yol
Let <2 be the variance for the strip with reference to the mean y,,

then oo )
3

Nodesi=Nde|_(y=u o)t

—w|

So far as the stripis concerned, the correlation will be high if s, s small.

N
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L&t ¥ 52 denote f N, &8dz; then, from (3),

— G0

o ]
it :J‘ I (?f - y-(u)g ¢(.’L‘, y) d'!'dy'

which can be written as
oo

w ] =]
S = ‘. f Y. y) dedy — I | Y Ol y) dnely
W — ) — Jo—an ) —o £\

w  ra
-2 [ J Yol — Ym) P, yX By,
o — ) —on sy ~

The first double integral is o2 and the last double il’l. ijg;?_rél vanishes
by {2). Hence

s
s 3

o Mo -
O\ 1 ¥ w1 fad 79
*T‘!:G"H_ [ ‘ y-m-f"ﬁ(xs 'Q’} die d*?!&.
Jowl_u A\
Defining the correlation ratio, as before, by

2 P .:

% &
pr=l-——9d &

A

0—2 *

1 re o NG
we obtain He= , J Yoo, yydady.
e =3 e
The correlatiomm«illdbnanlﬁ&éﬁify-}plig-imar 1. Ir follows as in the
previous section that if he* distribution is normal then g=r and
that, in all other casce, g% r.
)

9-14. Contingency coefficient

[n the prey’ii)fg’ﬁ sections on bivariate distributions the attributes
have, by ipli¢ation, been capable of numerical cxpression, as illu-
strated ipiFable 21, which gives the statistics relating to the measures
of ste]lal::"radIi and masses. In some problems one atiribute, or cven
bntp%ﬁil.y signify a quality which cannot he specified numerically:
fatexample, we may be dealing with groups of stars, ench group being

. ;"z%’s,s'.ociated with a particular colour representing one attribute.

37 Let 4; (i=1,2, ..., ) represent the various groups arranged
according to one particular quality and B, (§=1, 2, ..., n}, the groups
arranged according to a second guatity, or perhaps to a numerical

specification, We can then form the contingeney table represented in
outline by Table 24, in which n,, denotes the frequency of individuals
with attributes 4, and B;, a, denotes the sum of all the individuals
with the attribute 4, and ; denotes the sum of all the individuals with
the attribute B;. If ¥ is the total frequency, then

N=3a,=¥5,.
i i
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Table 24
A, A, A, A, Sums
3 Hyp Hqy Hip1 ]
11, i3t by
4, s b
i, Pl Foun b,
Bums ooy tha i€y yy

'.i:[.'('Jll]_ the data we infer that the probability that an individugl
will iave the property A isafN and, similarly, that the proba-pj li@‘\
thiit an individual will have the property B, is b;/N. For wnrelgted
altribuwes let p,/N denote the probahility that an indi}'idu’al will
have the property A4, and the property B then m'\. >

\

; by \¥,
o %Y
v /N ==
NN A
R\
1 ‘.‘\"
o v‘i:":_?\‘,:a"ibj' PN

We can now form, from the sta-t-i‘fsﬁi:é:s, the contingency Table 25

in terms of the numbers v;;. “.:\Jj,\f'w.dbraulibrary,org,in
STable 25
W\
AN A A
£ N’
By \b}L ¥y L
~I£’," Vs
(B, Via Vo

\Y
If the :%%Eii)ut.es ore associated by prre chance, the statistics within
the Thbles 24 and 25 may be espected to be very much alike for
ordinary values of N and identical if & is a very large number.
NJf, on the other hand, there is some degree of correlation, the
difforences (n;— ve;) may be expected to be systematic i character.
Pearson’s moasute of correlation is defined in terms of a con-

tingency function.t ¥, given by

i
W=QEE§
4 PO )

2
Ry — v_a-j}_
Viz
oted by ¢ but, £0 obviate

d by Poarson 13 usually demn 1 _
; f the previcus soctions,

1 bivariate function, @ ©
d here by ¥

t The Minction intiroduce
econfugion with the norma
Pearson’s fuaction is denote

N
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and the contingency coefficient, ¢, related to the degree of conrelation,
is defined hy

A+
in which d<e<1,

Thus, when the association of the attributles is one of pure chanee
and N iy vory large, then == and, accordingly, e=. When the
correlation is considerable, then ¢ will have a high fractional vatue.

N
9:15. The contiugency function  for a normal hitgyiate
distribution KoY

For o normal bivariate distribution the cont-ingenc}_-':\l}}m'-i"[rm Gan
be evaluated in terms of the corrclation c-ocﬂ‘ieienj;,{ji‘ Tie normal
bivariate function, ¢, is given, from 9-10(3), by i "‘

4

A
where E=ux? + 2hay 4 by, from: the pr@@ty

f f Bl gedy =1,
—w Jm

™
we have www.dpraulibra S gugline. (1)
=l Az

The contingeney taplefor the statistics may now be supposed to
have a typical classniterval da ( corresponding to 4 in Table 24) and
a class interval d-‘?q\\(ﬁedu'espondjng to Bj.

Then, if ,d¢ denotes the frequency in the interval &, to x4 da for
all values of @) the total frequency being N, we have

N N AR e
Y de=Ndx [ e, ) dy:;\"—da:f e Py,
d o - T J-=
ol A {By + ha)?
L Sine E="10 ki
o Bince s 5 ,
we obtain, in the usual way,
Nat Al
x=—"¢ SR Y 3
; Ty exp , v e
- Fad A
Similarly, bdy=2= e
imilarly cdy ,\.-'(?ra,}eXP]: e :Idy

Accordingly,

1 NA A A
vy dedy= o deb;dy= ?’T_J\;'r(fib_) exp [— 3 52— — yz:l .
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AL
Also, oy d’cdy“Ee—L dedy.

From these we have

Fl f=a) aa o
j f yﬁdxdy:j\-*zf f ny; e dy (2)
— —m —_—0 g =

2 N
3-11(}. @ = A_'\'f_(a_b) e—'EL’ (3}

Vi 7

N
A A \

whers E152EF3$2FEy2 ) ‘\':.\,‘

Ea1x2+2h1xvy+bly2, 1 Q
o A abth? AN
in which ap=20— = &{/

hy=2h, \\Q“

\/

b ab+h? .‘?}

ST 2O
. 2 (ab_‘:}fa a2
"Then, Alsalbl—%:w‘_:&;‘
By analogy with (1), ::u‘{{\?w,dbraulibrary.01‘g.in

z ._17 \;"(a-b) .
J. J ’ dx dy—-;;‘" A ’
\ l

@ £ gj Nab
henee, from (3), "\‘V f dxdy-'-'r
\f\v) - w0 Vig

'\st _ N

{.\ ]_-—"-"2,

by me«kﬁg\\ch -10(15).
\le %he contingeney function, ¥,

ol —v;
Q \'T L2 _.[ f s,f ‘U da:dy
o [-v]
_~ j J nfjdxdy+J J. vigdody
1—y% —wd —m —w) —©

is given in this case by

. g
Hence (4

16
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The contingency coefficient, ¢, is then given by

Thus, for & normal bivariate distribution, the contingensy cocfficicat
is identical with the correlation coefficient, .

9-16. Normal trivariate distributions ~
As in the case of a bivariate distribution, the most }_:.t'o‘bablc
position of the points represented by the coordinates (;a;?-g};}; z} 18
assumed to be the centroid (Z, 7, 7). e N
1£&;, 9, ¢ arc the deviations from Z, 7, 7, respeo tiy :1:,'\} DM 2
then p RO
Ly=; — I, ?}-1%—9’: g'z 173“
N

The relative frequency function referreds %0 uxes through the
centroid iz denoted hy N
’ 4

¢(£x’s Wi ‘:‘a'} (:‘5( ‘T y\"‘J "?_"}
"Lhe probability, P, for the dlbt-rlblltlon is given by

= I[gﬁ(%’ *‘“«’?: ¥i— y! 23-—2},

bra uh fary.org.in
and P is n maximih w% bJ ¥ Or8:

N2 E‘P oP oP

A"’}\ EE ay e

From the ﬁlst (}mdnhon we have, on taking logarithms,

:‘\:“:\ Og‘;b Ea_gxk)gé ir Hiz g&}

But Xéra——- 0 hence, by arguments similar to those leading to 9-04 (6],
waghtain, on writing (£, 7, {) for a representative point,

A E |

\’\;” a_glog?ﬁ(g! i, §}= '_(Qa'g‘f‘ 3}1?}+2g§)

It is convenient, as hefore, to denote the devistions £ 5, & by
X, 4, z; then

3_:.:_:]0g Hx, 4,2) = — (2ax+ 2hy + 2g2).

The second and third conditions in (1) give, similarly,

—J]orr 2 ¢ = —(2ha+ 2by + 2f%)
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il
and égloggﬁ——- —{2gx+ 2fy -+ 2c2),

w hiivit arc seen to satisfy the necessary conditions
geg 00

— ==t Ty cte.
dx oy oy dx

4o then obtdun

7
d(log ¢) E — 10,@3 ¢dx+—-— 10&,¢dy+—-—log¢dz

= —d(ax2+by +cz‘+2fyz+2w+2hmy); OV
atsitals ¢(x-yz)-—ke‘£ O 2
wliare B =aa® 4 byt ce2+ 2fyz + 2gaw+ 2hey, “'\"& (3)

and F is & constant with a specific value which Wﬂl b{ﬁound in the

next section.
9.17. The constants of the normal triv riate distribution
The probability function i, Y, 2 )13 suchhh-lt

Jf ¢d 3 53 W dbrauhbl ary.org.in

—% Ny -l
that iz, from %16 (2}, N, k=1
~\ w

where \\ I= J. er-ﬁ dxdydz. (

Now, by 9-16; 3})
w;;? +2hxy+by3+c(z+

(5]

)

fy+gm)2 (fy-+ge)
(4]

N
’0
R

O
».’,\ l [({EG q )x -[—2 Gh__fg xy.}. bc_.f2 2]—‘1-‘\‘3 z+p)
Cv

s/o

s.

where p={fy +g)/c.
\, Let A be the determm&nt defined by

| @ B, g
A=k, b [
‘9: f cl

for which, in the usual notation,
d=bo—f3, B=co—gh
F=gh—af, (G=hf—bd¢. H=fg—ch

C]=ab—-h2t

16-2
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Then, for spemﬁc values of » and y, or for a specific value of p,

we have, from (2
[ra)
f J. =% dxdyf ok Pt

where K, = (B.-z:‘2 —2Hzy + 437,
The z-integral is /(z/c). ~
Further, 47 How 1 ¢
o= |- (AR H 22, A o
By =2 (y > )+GA{4B HY)x O
But AB— He—oA; O
hence A\

)
I= (ﬁ)fw ex __ia:a d ex :\H £y
= . ~ P 4 x p \é\ r_\,.),-.

so that, finally, ‘}\“ (8)
~<~;\
APNY
Then, from (1), P
Sl

www.d 1au mary . Org.on

j J f o' (w,y, 2) dudy dz
‘.3?;
P, —le”x%“E dxdydz
LD

The variance, o2, for the ‘&1’&9‘5 of x 1n the distribution is given by

I
&
A W _ k ol
*‘;\ o e
o) 2 o
) Now, from (3), oI _moA_ 1 oA
dat 2A% da 28A 2a

But, A=abc+ 2fgh —af*— bg? — ch?,

and hence 8& =be—f2=

and (;ri — i .
2A

Similarly, 2B L O
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Again, the covariance, p,,, for the variables » and y is given by

Poy= ”J@ﬂ% y, %) dodydz=k j f ryeF dudydz
A -

=1k _—.
o
- gl  wtaa  H
Bur = = —
o - gAROh kA A
. H A\
Henee Pay=gx \ \J))
o F o L \v/
Similarty, sz=§5: Pra=gn- “f'w‘.
‘I'e correlution coefficient for the variables » and “y(\&énoted by
Feys 18 defined by Py v/
Py =" ) )
oY Jmo_y) :‘\\"
H ~\"
henee Py o'mav=ﬂ: N\
):', ~ G
Similarly, 10y % =y [T g8
- Somvw.dbraulibrary .org.i
Now, AR 2 y-org.m
4, H, 6 A ok TeT:Tu T

* 2
Ai=| H, B, F __'\SM Py TaTys Tys TpsFyT2 s
A Y4

¢ " 2
G) F) C\\ ,_,-ﬂ o-ﬂ: opz EH r‘h’z o"h‘ Uz a 0’2

N\

s\ 1, Frgy  Taz
A 4
. ¢ 2 2
from which L&) —=0%0507 | Teus L, fu (4)
x:\ 5 1
E"\.N . '?',_.-5 H] '?’-yz:

From,‘t}m statistios 7. Oy
thedorrelation coefficients are &
Thg':n" A is calenlated from (4).
ow, ah=BC—F%;
EI-=4AO'30-§(]- _?-35):

and o, are found in the usual way; alsE,
ch found as illustrated in $-07.

hence
with two similar formulae for pand c.
Again, fA:GH-—AF;
hence f= dAG o, TlF ey —Tya)s
and A.

with two similar formulae for g
Thus, the constants in the homogeneous

determined.

quadratic function E are
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checks in forming, 112
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properties of, 26
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integrals associated with, 22
principal moments of, 27
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Xormal trivariate distribution, 242
Notation, Gauss’s, 47
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Observational equation, 41
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Ogive curve, 4

Operators, 187, 215
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